
GStreamer Plugin Writer’s Guide

Richard John Boulton

Erik Walthinsen

Steve Baker

Leif Johnson

GStreamer Plugin Writer’s Guide
by Richard John Boulton, Erik Walthinsen, Steve Baker, and Leif Johnson

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Table of Contents
I. Introduction..1

1. Preface..1
Who Should Read This Guide?...1
Preliminary Reading ..1
Structure of This Guide..1

2. Basic Concepts ..3
Elements and Plugins...3
Pads...3
Buffers ..4
Types and Properties..4
Events ...10

II. Building a Filter ...13
3. Constructing the Boilerplate...13

Getting the Gstreamer Plugin Templates ..13
Using the Project Stamp...13
Examining the Basic Code...14
Creating a Filter With FilterFactory (Future)..14
GstElementDetails ..15
Constructor Functions..15
The plugin_init function ..16

4. Specifying the pads ..17
5. The chain function..19
6. What are states? ..21
7. Mangaging filter state..23
8. Adding Arguments ..25
9. Signals ..27
10. Initialization ..29
11. Instantiating the plugins ...31
12. Linking the plugins ..33
13. Running the pipeline ...35

III. Advanced Filter Concepts...37
14. How scheduling works ...37
15. How a loopfunc works ..39
16. Adding a second output..41
17. Modifying the test application ...43
18. Types and Properties..45

Building a Simple Format for Testing..45
A Simple Mime Type..45
Type Properties ...45
Typefind Functions and Autoplugging ...45

19. Request pads ...47
20. Supporting Dynamic Parameters...49

Comparing Dynamic Parameters with GObject Properties49
21. Getting Started..51
22. Defining Parameter Specificiations..53

Direct Method ...53
Callback Method...54
Array Method..55

23. The Data Processing Loop ..57
DParam Manager Modes...58
DParam Manager Modes...58

IV. Other Element Types ...59
24. Writing a Source ...59
25. Writing a Sink ...61
26. Writing an Autoplugger ..63

iii

V. Appendices ...65
27. Things to check when writing a filter..65
28. Things to check when writing a source or sink ...67

iv

Chapter 1. Preface

Who Should Read This Guide?
This guide explains how to write new modules for GStreamer. The guide is relevant
to several groups of people:

• Anyone who wants to add support for new ways of processing data in GStreamer.
For example, a person in this group might want to create a new data format con-
verter, a new visualization tool, or a new decoder or encoder.

• Anyone who wants to add support for new input and output devices. For example,
people in this group might want to add the ability to write to a new video output
system or read data from a digital camera or special microphone.

• Anyone who wants to extend GStreamer in any way. You need to have an un-
derstanding of how the plugin system works before you can understand the con-
straints that the plugin system places on the rest of the code. Also, you might be
surprised after reading this at how much can be done with plugins.

This guide is not relevant to you if you only want to use the existing functionality
of GStreamer, or if you just want to use an application that uses GStreamer. If you
are only interested in using existing plugins to write a new application - and there
are quite a lot of plugins already - you might want to check the GStreamer Application
Development Manual. If you are just trying to get help with a GStreamer application,
then you should check with the user manual for that particular application.

Preliminary Reading
This guide assumes that you are somewhat familiar with the basic workings of
GStreamer. For a gentle introduction to programming concepts in GStreamer, you
may wish to read the GStreamer Application Development Manual first. Also check
out the documentation available on the GStreamer web site1, particularly the
documents available in the GStreamer wiki2.

Since GStreamer adheres to the GObject programming model, this guide also as-
sumes that you understand the basics of GObject3 programming. There are several
good introductions to the GObject library, including the GTK+ Tutorial4.

Structure of This Guide
To help you navigate through this guide, it is divided into several large parts. Each
part addresses a particular broad topic concerning GStreamer plugin development.
The parts of this guide are laid out in the following order:

• Building a Filter - Introduction to the structure of a plugin, using an example audio
filter for illustration.

This part covers all the basic steps you generally need to perform to build a plugin.
The discussion begins by giving examples of generating the basic structures with
Constructing the Boilerplate. Then you will learn how to write the code to get a
basic filter plugin working: These steps include chapters on Chapter 18, Chapter 4,
Chapter 5, and (WRITEME: building state).

After you have finished the first steps, you will be able to create a working plugin,
but your new plugin might not have all the functionality you need. To provide
some standard functionality, you will learn how to add more features to a new
plugin. These features are described in the chapters on (WRITEME) and Chapter 9.

1

Chapter 1. Preface

Finally, you will see in (WRITEME) how to write a short test application to try out
your new plugin.

• Advanced Filter Concepts - Information on advanced features of GStreamer plu-
gin development.

After learning about the basic steps, you should be able to create a functional au-
dio or video filter plugin with some nice features. However, GStreamer offers more
for plugin writers. This part of the guide includes chapters on more advanced top-
ics, such as Chapter 19, . Since these features are more advanced, the chapters can
basically be read in any order, as you find that your plugins require these features.

• Other Element Types - Explanation of writing other plugin types.

Because the first two parts of the guide use an audio filter as an example, the con-
cepts introduced apply to filter plugins. But many of the concepts apply equally
to other plugin types, including sources, sinks, and autopluggers. This part of
the guide presents the issues that arise when working on these more specialized
plugin types. The part includes chapters on Writing a Source, Writing a Sink, and
Writing an Autoplugger.

• Appendices - Further information for plugin developers.

The appendices contain some information that stubbornly refuses to fit cleanly in
other sections of the guide. This information includes (WRITEME) and FIXME:
organize better.

The remainder of this introductory part of the guide presents a short overview of the
basic concepts involved in GStreamer plugin development. Topics covered include
Elements and Plugins, Pads, Buffers, Types and Properties, and Events. If you are al-
ready familiar with this information, you can use this short overview to refresh your
memory, or you can skip to Building a Filter.

As you can see, there a lot to learn, so let’s get started!

• Creating compound and complex elements by extending from a GstBin. This will
allow you to create plugins that have other plugins embedded in them.

• Adding new mime-types to the registry along with typedetect functions. This will
allow your plugin to operate on a completely new media type.

Notes
1. http://gstreamer.net/docs/
2. http://gstreamer.net/wiki/

3. http://developer.gnome.org/doc/API/2.0/gobject/index.html

4. http://www.gtk.org/tutorial/

2

Chapter 2. Basic Concepts

This chapter of the guide introduces the basic concepts of GStreamer. Understand-
ing these concepts will help you grok the issues involved in extending GStreamer.
Many of these concepts are explained in greater detail in the GStreamer Application
Development Manual; the basic concepts presented here serve mainly to refresh your
memory.

Elements and Plugins
Elements are at the core of GStreamer. In the context of plugin development, an ele-
ment is an object derived from the GstElement class. Elements provide some sort of
functionality when linked with other elements: For example, a source element pro-
vides data to a stream, and a filter element acts on the data in a stream. Without
elements, GStreamer is just a bunch of conceptual pipe fittings with nothing to link.
A large number of elements ship with GStreamer, but extra elements can also be
written.
Just writing a new element is not entirely enough, however: You will need to encap-
sulate your element in a plugin to enable GStreamer to use it. A plugin is essentially
a loadable block of code, usually called a shared object file or a dynamically linked
library. A single plugin may contain the implementation of several elements, or just
a single one. For simplicity, this guide concentrates primarily on plugins containing
one element.

A filter is an important type of element that processes a stream of data. Producers
and consumers of data are called source and sink elements, respectively. Elements
that link other elements together are called autoplugger elements, and a bin element
contains other elements. Bins are often responsible for scheduling the elements that
they contain so that data flows smoothly.

The plugin mechanism is used everywhere in GStreamer, even if only the standard
package is being used. A few very basic functions reside in the core library, and all
others are implemented in plugins. A plugin registry is used to store the details of
the plugins in an XML file. This way, a program using GStreamer does not have to
load all plugins to determine which are needed. Plugins are only loaded when their
provided elements are requested.
See the GStreamer Library Reference for the current implementation details of
GstElement1 and GstPlugin2.

Pads
Pads are used to negotiate links and data flow between elements in GStreamer. A pad
can be viewed as a “place” or “port” on an element where links may be made with
other elements. Pads have specific data handling capabilities: A pad only knows how
to give or receive certain types of data. Links are only allowed when the capabilities
of two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug or jack on a physical
device. Consider, for example, a home theater system consisting of an amplifier, a
DVD player, and a (silent) video projector. Linking the DVD player to the amplifier is
allowed because both devices have audio jacks, and linking the projector to the DVD
player is allowed because both devices have compatible video jacks. Links between
the projector and the amplifier may not be made because the projector and amplifier
have different types of jacks. Pads in GStreamer serve the same purpose as the jacks
in the home theater system.

For the moment, all data in GStreamer flows one way through a link between ele-
ments. Data flows out of one element through one or more source pads, and elements

3

Chapter 2. Basic Concepts

accept incoming data through one or more sink pads. Source and sink elements have
only source and sink pads, respectively.

See the GStreamer Library Reference for the current implementation details of a
GstPad3.

Buffers
All streams of data in GStreamer are chopped up into chunks that are passed from
a source pad on one element to a sink pad on another element. Buffers are structures
used to hold these chunks of data. Buffers can be of any size, theoretically, and they
may contain any sort of data that the two linked pads know how to handle. Normally,
a buffer contains a chunk of some sort of audio or video data that flows from one
element to another.

Buffers also contain metadata describing the buffer’s contents. Some of the important
types of metadata are:

• A pointer to the buffer’s data.

• An integer indicating the size of the buffer’s data.

• A GstData object describing the type of the buffer’s data.
• A reference count indicating the number of elements currently holding a reference

to the buffer. When the buffer reference count falls to zero, the buffer will be un-
linked, and its memory will be freed in some sense (see below for more details).

See the GStreamer Library Reference for the current implementation details of a
GstBuffer4.

Buffer Allocation and Buffer Pools
Buffers can be allocated using various schemes, and they may either be passed on
by an element or unreferenced, thus freeing the memory used by the buffer. Buffer
allocation and unlinking are important concepts when dealing with real time media
processing, since memory allocation is relatively slow on most systems.

To improve the latency in a media pipeline, many GStreamer elements use a buffer
pool to handle buffer allocation and unlinking. A buffer pool is a relatively large
chunk of memory that is the GStreamer process requests early on from the oper-
ating system. Later, when elements request memory for a new buffer, the buffer pool
can serve the request quickly by giving out a piece of the allocated memory. This
saves a call to the operating system and lowers latency. [If it seems at this point
like GStreamer is acting like an operating system (doing memory management, etc.),
don’t worry: GStreamerOS isn’t due out for quite a few years!]
Normally in a media pipeline, most filter elements in GStreamer deal with a buffer
in place, meaning that they do not create or destroy buffers. Sometimes, however,
elements might need to alter the reference count of a buffer, either by copying or
destroying the buffer, or by creating a new buffer. These topics are generally reserved
for non-filter elements, so they will be addressed at that point.

Types and Properties
GStreamer uses a type system to ensure that the data passed between elements is in
a recognized format. The type system is also important for ensuring that the parame-

4

Chapter 2. Basic Concepts

ters required to fully specify a format match up correctly when linking pads between
elements. Each link that is made between elements has a specified type.

The Basic Types
GStreamer already supports many basic media types. Following is a table of the basic
types used for buffers in GStreamer. The table contains the name ("mime type") and
a description of the type, the properties associated with the type, and the meaning of
each property.

Table 2-1. Table of Basic Types

Mime Type Description Property Property
Type

Property
Values

Property
Description

audio/raw Unstruc-
tured and
uncom-
pressed raw
audio data.

rate integer greater than
0

The sample
rate of the
data, in
samples per
second.

channels integer greater than
0

The
number of
channels of
audio data.

format string “int” or
“float”

The format
in which the
audio data
is passed.

law integer 0, 1, or 2 (Valid only
if the data is
in integer
format.) The
law used to
describe the
data. The
value 0
indicates
“linear”, 1
indicates
“mu law”,
and 2
indicates
“A law”.

5

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

endianness boolean 0 or 1 (Valid only
if the data is
in integer
format.) The
order of
bytes in a
sample. The
value 0
means
“little-
endian”
(bytes are
least
significant
first). The
value 1
means “big-
endian”
(most
significant
byte first).

signed boolean 0 or 1 (Valid only
if the data is
in integer
format.)
Whether the
samples are
signed or
not.

width integer greater than
0

(Valid only
if the data is
in integer
format.) The
number of
bits per
sample.

6

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

depth integer greater than
0

(Valid only
if the data is
in integer
format.) The
number of
bits used
per sample.
This must
be less than
or equal to
the width: If
the depth is
less than the
width, the
low bits are
assumed to
be the ones
used. For
example, a
width of 32
and a depth
of 24 means
that each
sample is
stored in a
32 bit word,
but only the
low 24 bits
are actually
used.

layout string “gfloat” (Valid only
if the data is
in float
format.) A
string
representing
the way in
which the
floating
point data is
represented.

intercept float any,
normally 0

(Valid only
if the data is
in float
format.) A
floating
point value
representing
the value
that the
signal
“centers”
on.

7

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

slope float any,
normally 1.0

(Valid only
if the data is
in float
format.) A
floating
point value
representing
how far the
signal
deviates
from the
intercept. A
slope of 1.0
and an
intercept of
0.0 would
mean an
audio signal
with
minimum
and
maximum
values of
-1.0 and 1.0.
A slope of
0.5 and
intercept of
0.5 would
represent
values in
the range
0.0 to 1.0.

audio/mp3 Audio data
compressed
using the
mp3
encoding
scheme.

framed boolean 0 or 1 A true
value
indicates
that each
buffer
contains
exactly one
frame. A
false value
indicates
that frames
and buffers
do not
necessarily
match up.

layer integer 1, 2, or 3 The
compression
scheme
layer used
to compress
the data.

8

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

bitrate integer greater than
0

The bitrate,
in kilobits
per second.
For VBR
(variable
bitrate) mp3
data, this is
the average
bitrate.

channels integer greater than
0

The
number of
channels of
audio data
present.

joint-stereo boolean 0 or 1 If true, this
implies that
stereo data
is stored as
a combined
signal and
the
difference
between the
signals,
rather than
as two
entirely
separate
signals. If
true, the
“channels”
attribute
must not be
zero.

audio/x-
ogg

Audio data
compressed
using the
Ogg Vorbis
encoding
scheme.

FIXME:
There are
currently no
parameters
defined for
this type.

9

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

video/raw Raw video
data.

fourcc FOURCC
code

A FOURCC
code
identifying
the format
in which
this data is
stored.
FOURCC
(Four
Character
Code) is a
simple
system to
allow un-
ambiguous
identifica-
tion of a
video
datastream
format. See
http://www.webartz.com/fourcc/

width integer greater than
0

The
number of
pixels wide
that each
video frame
is.

height integer greater than
0

The
number of
pixels high
that each
video frame
is.

video/mpeg Video data
compressed
using an
MPEG
encoding
scheme.

FIXME:
There are
currently no
parameters
defined for
this type.

video/avi Video data
compressed
using the
AVI
encoding
scheme.

FIXME:
There are
currently no
parameters
defined for
this type.

Events
Sometimes elements in a media processing pipeline need to know that something
has happened. An event is a special type of data in GStreamer designed to serve this
purpose. Events describe some sort of activity that has happened somewhere in an

10

Chapter 2. Basic Concepts

element’s pipeline, for example, the end of the media stream or a clock discontinuity.
Just like any other data type, an event comes to an element on a sink pad and is
contained in a normal buffer. Unlike normal stream buffers, though, an event buffer
contains only an event, not any media stream data.

See the GStreamer Library Reference for the current implementation details of a
GstEvent5.

Notes
1. gstreamer/gstelement.html

2. http://gstreamer.net/docs/current/gstreamer/gstreamer-GstPlugin.html

3. http://gstreamer.net/docs/current/gstreamer/gstreamer-GstPad.html
4. http://gstreamer.net/docs/current/gstreamer/gstreamer-GstBuffer.html

5. http://gstreamer.net/docs/current/gstreamer/gstreamer-GstEvent.html

11

Chapter 2. Basic Concepts

12

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimum code for a new
plugin. Starting from ground zero, you will see how to get the GStreamer template
source. Then you will learn how to use a few basic tools to copy and modify a tem-
plate plugin to create a new plugin. If you follow the examples here, then by the end
of this chapter you will have a functional audio filter plugin that you can compile
and use in GStreamer applications.

Getting the Gstreamer Plugin Templates
There are currently two ways to develop a new plugin for GStreamer: You can write
the entire plugin by hand, or you can copy an existing plugin template and write the
plugin code you need. The second method is by far the simpler of the two, so the first
method will not even be described here. (Errm, that is, “it is left as an exercise to the
reader.”)

The first step is to check out a copy of the gst-template CVS module to get an
important tool and the source code template for a basic GStreamer plugin. To check
out the gst-templatemodule, make sure you are connected to the internet, and type
the following commands at a command console:

shell $ cd .
shell $ cvs -d:pserver:anonymous@cvs.gstreamer.sourceforge.net:/cvsroot/gstreamer login
Logging in to :pserver:anonymous@cvs.gstreamer.sourceforge.net:2401/cvsroot/gstreamer
CVS password:
shell $ cvs -z3 -d:pserver:anonymous@cvs.gstreamer.sourceforge.net:/cvsroot/gstreamer co gst-template
U gst-template/README
U gst-template/gst-app/AUTHORS
U gst-template/gst-app/ChangeLog
U gst-template/gst-app/Makefile.am
U gst-template/gst-app/NEWS
U gst-template/gst-app/README
U gst-template/gst-app/autogen.sh
U gst-template/gst-app/configure.ac
U gst-template/gst-app/src/Makefile.am
...

After the first command, you will have to press ENTER to log in to the CVS server.
(You might have to log in twice.) The second command will check out a series of
files and directories into ./gst-template. The template you will be using is in
./gst-template/gst-plugin/ directory. You should look over the files in that
directory to get a general idea of the structure of a source tree for a plugin.

Using the Project Stamp
The first thing to do when making a new element is to specify some basic details
about it: what its name is, who wrote it, what version number it is, etc. We also need
to define an object to represent the element and to store the data the element needs.
These details are collectively known as the boilerplate.

The standard way of defining the boilerplate is simply to write some code, and fill
in some structures. As mentioned in the previous section, the easiest way to do
this is to copy a template and add functionality according to your needs. To help
you do so, there are some tools in the ./gst-template/tools/ directory. One tool,
gst-quick-stamp, is a quick command line tool. The other, gst-project-stamp, is
a full GNOME druid application that takes you through the steps of creating a new
project (either a plugin or an application).

13

Chapter 3. Constructing the Boilerplate

To use pluginstamp.sh, first open up a terminal window. Change to the
gst-template directory, and then run the pluginstamp.sh command. The
arguments to the pluginstamp.sh are:

1. the name of the plugin, and
2. the directory that should hold a new subdirectory for the source tree of the

plugin.

Note that capitalization is important for the name of the plugin. Under some
operating systems, capitalization is also important when specifying directory
names. For example, the following commands create the ExampleFilter plugin
based on the plugin template and put the output files in a new directory called
~/src/examplefilter/:

shell $ cd gst-template
shell $ tools/pluginstamp.sh ExampleFilter ~/src

Examining the Basic Code
First we will examine the code you would be likely to place in a header file (although
since the interface to the code is entirely defined by the pluging system, and doesn’t
depend on reading a header file, this is not crucial.) The code here can be found in
examples/pwg/examplefilter/boiler/gstexamplefilter.h.

Example 3-1. Example Plugin Header File

/* Definition of structure storing data for this element. */
typedef struct _GstExample GstExample;

struct _GstExample {
GstElement element;

GstPad *sinkpad,*srcpad;

gint8 active;
};

/* Standard definition defining a class for this element. */
typedef struct _GstExampleClass GstExampleClass;
struct _GstExampleClass {

GstElementClass parent_class;
};

/* Standard macros for defining types for this element. */
#define GST_TYPE_EXAMPLE \

(gst_example_get_type())
#define GST_EXAMPLE(obj) \

(GTK_CHECK_CAST((obj),GST_TYPE_EXAMPLE,GstExample))
#define GST_EXAMPLE_CLASS(klass) \

(GTK_CHECK_CLASS_CAST((klass),GST_TYPE_EXAMPLE,GstExample))
#define GST_IS_EXAMPLE(obj) \

(GTK_CHECK_TYPE((obj),GST_TYPE_EXAMPLE))
#define GST_IS_EXAMPLE_CLASS(obj) \

(GTK_CHECK_CLASS_TYPE((klass),GST_TYPE_EXAMPLE))

/* Standard function returning type information. */
GtkType gst_example_get_type(void);

14

Chapter 3. Constructing the Boilerplate

Creating a Filter With FilterFactory (Future)
A plan for the future is to create a FilterFactory, to make the process of making a
new filter a simple process of specifying a few details, and writing a small amount
of code to perform the actual data processing. Ideally, a FilterFactory would perform
the tasks of boilerplate creation, code functionality implementation, and filter regis-
tration.

Unfortunately, this has not yet been implemented. Even when someone eventually
does write a FilterFactory, this element will not be able to cover all the possibili-
ties available for filter writing. Thus, some plugins will always need to be manually
coded and registered.

Here is a rough outline of what is planned: You run the FilterFactory and give the
factory a list of appropriate function pointers and data structures to define a filter.
With a reasonable measure of preprocessor magic, you just need to provide a name
for the filter and definitions of the functions and data structures desired. Then you
call a macro from within plugin_init() that registers the new filter. All the fluff that
goes into the definition of a filter is thus be hidden from view.

GstElementDetails
The GstElementDetails structure gives a heirarchical type for the element, a human-
readable description of the element, as well as author and version data. The entries
are:

• A long, english, name for the element.

• The type of the element, as a heirarchy. The heirarchy is defined by specifying the
top level category, followed by a "/", followed by the next level category, etc. The
type should be defined according to the guidelines elsewhere in this document.
(FIXME: write the guidelines, and give a better reference to them)

• A brief description of the purpose of the element.

• The version number of the element. For elements in the main GStreamer source
code, this will often simply be VERSION, which is a macro defined to be the ver-
sion number of the current GStreamer version. The only requirement, however, is
that the version number should increase monotonically.

Version numbers should be stored in major.minor.patch form: ie, 3 (decimal) num-
bers, separated by periods (.).

• The name of the author of the element, optionally followed by a contact email
address in angle brackets.

• The copyright details for the element.

For example:

static GstElementDetails example_details = {
"An example plugin",
"Example/FirstExample",
"Shows the basic structure of a plugin",
VERSION,
"your name <your.name@your.isp>",
"(C) 2001",

};

15

Chapter 3. Constructing the Boilerplate

Constructor Functions
Each element has two functions which are used for construction of an element. These
are the _class_init() function, which is used to initialise the class (specifying what sig-
nals and arguments the class has and setting up global state), and the _init() function,
which is used to initialise a specific instance of the class.

The plugin_init function
Once we have written code defining all the parts of the plugin, we need to write the
plugin_init() function. This is a special function, which is called as soon as the plugin
is loaded, and must return a pointer to a newly allocated GstPlugin structure. This
structure contains the details of all the facilities provided by the plugin, and is the
mechanism by which the definitions are made available to the rest of the GStreamer
system. Helper functions are provided to help fill the structure: for future compata-
bility it is required that these functions are used, as documented below, rather than
attempting to access the structure directly.
Note that the information returned by the plugin_init() function will be cached in a
central registry. For this reason, it is important that the same information is always
returned by the function: for example, it must not make element factories available
based on runtime conditions. If an element can only work in certain conditions (for
example, if the soundcard is not being used by some other process) this must be
reflected by the element being unable to enter the READY state if unavailable, rather
than the plugin attempting to deny existence of the plugin.

16

Chapter 4. Specifying the pads

17

Chapter 4. Specifying the pads

18

Chapter 5. The chain function

19

Chapter 5. The chain function

20

Chapter 6. What are states?

21

Chapter 6. What are states?

22

Chapter 7. Mangaging filter state

23

Chapter 7. Mangaging filter state

24

Chapter 8. Adding Arguments

Define arguments in enum.

25

Chapter 8. Adding Arguments

26

Chapter 9. Signals

Define signals in enum.

27

Chapter 9. Signals

28

Chapter 10. Initialization

29

Chapter 10. Initialization

30

Chapter 11. Instantiating the plugins

(NOTE: we really should have a debugging Sink)

31

Chapter 11. Instantiating the plugins

32

Chapter 12. Linking the plugins

33

Chapter 12. Linking the plugins

34

Chapter 13. Running the pipeline

35

Chapter 13. Running the pipeline

36

Chapter 14. How scheduling works

aka pushing and pulling

37

Chapter 14. How scheduling works

38

Chapter 15. How a loopfunc works

aka pulling and pushing

39

Chapter 15. How a loopfunc works

40

Chapter 16. Adding a second output

Identity is now a tee

41

Chapter 16. Adding a second output

42

Chapter 17. Modifying the test application

43

Chapter 17. Modifying the test application

44

Chapter 18. Types and Properties

There is a very large set of possible types that may be used to pass data between ele-
ments. Indeed, each new element that is defined may use a new data format (though
unless at least one other element recognises that format, it will be most likely be use-
less since nothing will be able to link with it).

In order for types to be useful, and for systems like autopluggers to work, it is necces-
sary that all elements agree on the type definitions, and which properties are required
for each type. The GStreamer framework itself simply provides the ability to define
types and parameters, but does not fix the meaning of types and parameters, and
does not enforce standards on the creation of new types. This is a matter for a policy
to decide, not technical systems to enforce.

For now, the policy is simple:

• Do not create a new type if you could use one which already exists.

• If creating a new type, discuss it first with the other GStreamer developers, on at
least one of: IRC, mailing lists, the GStreamer wiki.

• Try to ensure that the name for a new format is as unlikely to conflict with any-
thing else created already, and is not a more generalised name than it should be.
For example: "audio/compressed" would be too generalised a name to represent
audio data compressed with an mp3 codec. Instead "audio/mp3" might be an ap-
propriate name, or "audio/compressed" could exist and have a property indicating
the type of compression used.

• Ensure that, when you do create a new type, you specify it clearly, and get it added
to the list of known types so that other developers can use the type correctly when
writing their elements.

Building a Simple Format for Testing

A Simple Mime Type

Type Properties

Typefind Functions and Autoplugging

45

Chapter 18. Types and Properties

46

Chapter 19. Request pads

aka pushing and pulling

47

Chapter 19. Request pads

48

Chapter 20. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough to control the parameters that
affect the behaviour of your element. When this is the case you can expose these
parameters as Dynamic Parameters which can be manipulated by any Dynamic Pa-
rameters aware application.

Throughout this section, the term dparams will be used as an abbreviation for "Dy-
namic Parameters".

Comparing Dynamic Parameters with GObject Properties
Your first exposure to dparams may be to convert an existing element from using
object properties to using dparams. The following table gives an overview of the
difference between these approaches. The significance of these differences should
become apparent later on.

Object Properties Dynamic Parameters

Parameter definition Class level at compile time Any level at run time

Getting and setting Implemented by element
subclass as functions

Handled entirely by
dparams subsystem

Extra objects required None - all functionality is
derived from base
GObject

Element needs to create
and store a
GstDParamManager at
object creation

Frequency and resolution of
updates

Object properties will only
be updated between calls
to _get, _chain or _loop

dparams can be updated
at any rate independant of
calls to _get, _chain or
_loop up to sample-level
accuracy

49

Chapter 20. Supporting Dynamic Parameters

50

Chapter 21. Getting Started

The dparams subsystem is contained within the gstcontrol library. You need to
include the header in your element’s source file:

#include <gst/control/control.h>

Even though the gstcontrol library may be linked into the host application, you
should make sure it is loaded in your plugin_init function:

static gboolean
plugin_init (GModule *module, GstPlugin *plugin)
{

...

/* load dparam support library */
if (!gst_library_load ("gstcontrol"))
{

gst_info ("example: could not load support library: ’gstcontrol’\n");
return FALSE;

}

...
}

You need to store an instance of GstDParamManager in your element’s struct:

struct _GstExample {
GstElement element;
...

GstDParamManager *dpman;

...
};

The GstDParamManager can be initialised in your element’s init function:

static void
gst_example_init (GstExample *example)
{

...

example->dpman = gst_dpman_new ("example_dpman", GST_ELEMENT(example));

...
}

51

Chapter 21. Getting Started

52

Chapter 22. Defining Parameter Specificiations

You can define the dparams you need anywhere within your element but will usually
need to do so in only a couple of places:

• In the element init function, just after the call to gst_dpman_new

• Whenever a new pad is created so that parameters can affect data going into or out
of a specific pad. An example of this would be a mixer element where a seperate
volume parameter is needed on every pad.

There are three different ways the dparams subsystem can pass parameters into your
element. Which one you use will depend on how that parameter is used within your
element. Each of these methods has its own function to define a required dparam:

• gst_dpman_add_required_dparam_direct

• gst_dpman_add_required_dparam_callback

• gst_dpman_add_required_dparam_array

These functions will return TRUE if the required dparam was added successfully.

The following function will be used as an example.

gboolean
gst_dpman_add_required_dparam_direct (GstDParamManager *dpman,

GParamSpec *param_spec,
gboolean is_log,
gboolean is_rate,
gpointer update_data)

The common parameters to these functions are:

• GstDParamManager *dpman the element’s dparam manager

• GParamSpec *param_spec the param spec which defines the required dparam

• gboolean is_log whether this dparam value should be interpreted on a log scale
(such as a frequency or a decibel value)

• gboolean is_rate whether this dparam value is a proportion of the sample rate.
For example with a sample rate of 44100, 0.5 would be 22050 Hz and 0.25 would
be 11025 Hz.

Direct Method
This method is the simplest and has the lowest overhead for parameters which
change less frequently than the sample rate. First you need somewhere to store the
parameter - this will usually be in your element’s stuct.

struct _GstExample {
GstElement element;
...

GstDParamManager *dpman;
gfloat volume;
...

53

Chapter 22. Defining Parameter Specificiations

};

Then to define the required dparam just call
gst_dpman_add_required_dparam_direct and pass in the
location of the parameter to change. In this case the location is
&(example->volume).

gst_dpman_add_required_dparam_direct (
example->dpman,
g_param_spec_float("volume","Volume","Volume of the audio",

0.0, 1.0, 0.8, G_PARAM_READWRITE),
FALSE,
FALSE,
&(example->volume)

);

You can now use example->volume anywhere in your element knowing that it will
always contain the correct value to use.

Callback Method
This should be used if the you have other values to calculate whenever a parame-
ter changes. If you used the direct method you wouldn’t know if a parameter had
changed so you would have to recalculate the other values every time you needed
them. By using the callback method, other values only have to be recalculated when
the dparam value actually changes.

The following code illustrates an instance where you might want to use the callback
method. If you had a volume dparam which was represented by a gfloat number,
your element may only deal with integer arithmatic. The callback could be used to
calculate the integer scaler when the volume changes. First you will need somewhere
to store these values.

struct _GstExample {
GstElement element;
...

GstDParamManager *dpman;
gfloat volume_f;
gint volume_i;
...

};

When the required dparam is defined, the callback function
gst_example_update_volume and some user data (which in this case is our element
instance) is passed in to the call to gst_dpman_add_required_dparam_callback.

gst_dpman_add_required_dparam_callback (
example->dpman,
g_param_spec_float("volume","Volume","Volume of the audio",

0.0, 1.0, 0.8, G_PARAM_READWRITE),
FALSE,
FALSE,
gst_example_update_volume,
example

);

The callback function needs to conform to this signiture

54

Chapter 22. Defining Parameter Specificiations

typedef void (*GstDPMUpdateFunction) (GValue *value, gpointer data);

In our example the callback function looks like this

static void
gst_example_update_volume(GValue *value, gpointer data)
{
GstExample *example = (GstExample*)data;
g_return_if_fail(GST_IS_EXAMPLE(example));

example->volume_f = g_value_get_float(value);
example->volume_i = example->volume_f * 8192;

}

Now example->volume_i can be used elsewhere and it will always contain the cor-
rect value.

Array Method
This method is quite different from the other two. It could be thought of as a spe-
cialised method which should only be used if you need the advantages that it pro-
vides. Instead of giving the element a single value it provides an array of values
where each item in the array corresponds to a sample of audio in your buffer. There
are a couple of reasons why this might be useful.

• Certain optimisations may be possible since you can iterate over your dparams
array and your buffer data together.

• Some dparams may be able to interpolate changing values at the sample rate. This
would allow the array to contain very smoothly changing values which may be
required for the stability and quality of some DSP algorithms.

The array method is currently the least mature of the three methods and is not yet
ready to be used in elements, but plugin writers should be aware of its existance for
the future.

55

Chapter 22. Defining Parameter Specificiations

56

Chapter 23. The Data Processing Loop

This is the most critical aspect of the dparams subsystem as it relates to elements. In
a traditional audio processing loop, a for loop will usually iterate over each sample
in the buffer, processing one sample at a time until the buffer is finished. A simplified
loop with no error checking might look something like this.

static void
example_chain (GstPad *pad, GstBuffer *buf)
{
...
gfloat *float_data;
int j;
GstExample *example = GST_EXAMPLE(GST_OBJECT_PARENT (pad));
int num_samples = GST_BUFFER_SIZE(buf)/sizeof(gfloat);
float_data = (gfloat *)GST_BUFFER_DATA(buf);
...
for (j = 0; j < num_samples; j++) {

float_data[j] *= example->volume;
}
...

}

To make this dparams aware, a couple of changes are needed.

static void
example_chain (GstPad *pad, GstBuffer *buf)
{
...
int j = 0;
GstExample *example = GST_EXAMPLE(GST_OBJECT_PARENT (pad));
int num_samples = GST_BUFFER_SIZE(buf)/sizeof(gfloat);
gfloat *float_data = (gfloat *)GST_BUFFER_DATA(buf);
int frame_countdown = GST_DPMAN_PREPROCESS(example->dpman, num_samples, GST_BUFFER_TIMESTAMP(buf));
...
while (GST_DPMAN_PROCESS_COUNTDOWN(example->dpman, frame_countdown, j)) {

float_data[j++] *= example->volume;
}
...

}

The biggest changes here are 2 new macros, GST_DPMAN_PREPROCESS and
GST_DPMAN_PROCESS_COUNTDOWN. You will also notice that the for loop has become
a while loop. GST_DPMAN_PROCESS_COUNTDOWN is called as the condition for the
while loop so that any required dparams can be updated in the middle of a buffer if
required. This is because one of the required behaviours of dparams is that they can
be sample accurate. This means that parameters change at the exact timestamp that
they are supposed to - not after the buffer has finished being processed.

It may be alarming to see a macro as the condition for a while loop, but it is actually
very efficient. The macro expands to the following.

#define GST_DPMAN_PROCESS_COUNTDOWN(dpman, frame_countdown, frame_count) \
(frame_countdown-- || \
(frame_countdown = GST_DPMAN_PROCESS(dpman, frame_count)))

So as long as frame_countdown is greater than 0, GST_DPMAN_PROCESS will not be
called at all. Also in many cases, GST_DPMAN_PROCESS will do nothing and simply
return 0, meaning that there is no more data in the buffer to process.

The macro GST_DPMAN_PREPROCESS will do the following:

57

Chapter 23. The Data Processing Loop

• Update any dparams which are due to be updated.

• Calculate how many samples should be processed before the next required update

• Return the number of samples until next update, or the number of samples in the
buffer - whichever is less.

In fact GST_DPMAN_PROCESS may do the same things as GST_DPMAN_PREPROCESS de-
pending on the mode that the dparam manager is running in (see below).

DParam Manager Modes
A brief explanation of dparam manager modes might be useful here even though it
doesn’t generally affect the way your element is written. There are different ways me-
dia applications will be used which require that an element’s parameters be updated
in differently. These include:

• Timelined - all parameter changes are known in advance before the pipeline is run.

• Realtime low-latency - Nothing is known ahead of time about when a parameter
might change. Changes need to be propagated to the element as soon as possible.

When a dparam-aware application gets the dparam manager for an element, the first
thing it will do is set the dparam manager mode. Current modes are "synchronous"
and "asynchronous".

If you are in a realtime low-latency situation then the "synchronous"mode is appro-
priate. During GST_DPMAN_PREPROCESS this mode will poll all dparams for required
updates and propagate them. GST_DPMAN_PROCESS will do nothing in this mode. To
then achieve the desired latency, the size of the buffers needs to be reduced so that
the dparams will be polled for updates at the desired frequency.

In a timelined situation, the "asynchronous" mode will be required. This
mode hasn’t actually been implemented yet but will be described anyway.
The GST_DPMAN_PREPROCESS call will precalculate when and how often each
dparam needs to update for the duration of the current buffer. From then on
GST_DPMAN_PROCESS will propagate the calculated updates each time it is called
until end of the buffer. If the application is rendering to disk in non-realtime, the
render could be sped up by increasing the buffer size. In the "asynchronous" mode
this could be done without affecting the sample accuracy of the parameter updates

DParam Manager Modes
All of the explanation so far has presumed that the buffer contains audio data with
many samples. Video should be regarded differently since a video buffer often con-
tains only 1 frame. In this case some of the complexity of dparams isn’t required but
the other benefits still make it useful for video parameters. If a buffer only contains
one frame of video, only a single call to GST_DPMAN_PREPROCESS should be required.
For more than one frame per buffer, treat it the same as the audio case.

58

Chapter 24. Writing a Source

FIXME: write.

59

Chapter 24. Writing a Source

60

Chapter 25. Writing a Sink

FIXME: write.

61

Chapter 25. Writing a Sink

62

Chapter 26. Writing an Autoplugger

FIXME: write.

63

Chapter 26. Writing an Autoplugger

64

Chapter 27. Things to check when writing a filter

65

Chapter 27. Things to check when writing a filter

66

Chapter 28. Things to check when writing a source or sink

67

Chapter 28. Things to check when writing a source or sink

68

	GStreamer Plugin Writer's Guide
	Table of Contents
	Chapter 1. Preface
	Who Should Read This Guide?
	Preliminary Reading
	Structure of This Guide

	Chapter 2. Basic Concepts
	Elements and Plugins
	Pads
	Buffers
	Buffer Allocation and Buffer Pools

	Types and Properties
	The Basic Types

	Events

	Chapter 3. Constructing the Boilerplate
	Getting the Gstreamer Plugin Templates
	Using the Project Stamp
	Examining the Basic Code
	Creating a Filter With FilterFactory (Future)
	GstElementDetails
	Constructor Functions
	The plugininit function

	Chapter 4. Specifying the pads
	Chapter 5. The chain function
	Chapter 6. What are states?
	Chapter 7. Mangaging filter state
	Chapter 8. Adding Arguments
	Chapter 9. Signals
	Chapter 10. Initialization
	Chapter 11. Instantiating the plugins
	Chapter 12. Linking the plugins
	Chapter 13. Running the pipeline
	Chapter 14. How scheduling works
	Chapter 15. How a loopfunc works
	Chapter 16. Adding a second output
	Chapter 17. Modifying the test application
	Chapter 18. Types and Properties
	Building a Simple Format for Testing
	A Simple Mime Type
	Type Properties
	Typefind Functions and Autoplugging

	Chapter 19. Request pads
	Chapter 20. Supporting Dynamic Parameters
	Comparing Dynamic Parameters with GObject Properties

	Chapter 21. Getting Started
	Chapter 22. Defining Parameter Specificiations
	Direct Method
	Callback Method
	Array Method

	Chapter 23. The Data Processing Loop
	DParam Manager Modes
	DParam Manager Modes

	Chapter 24. Writing a Source
	Chapter 25. Writing a Sink
	Chapter 26. Writing an Autoplugger
	Chapter 27. Things to check when writing a filter
	Chapter 28. Things to check when writing a source or sink

