
GStreamer Application Development Manual (0.8.3)

Wim Taymans

Steve Baker

Andy Wingo

GStreamer Application Development Manual (0.8.3)
by Wim Taymans, Steve Baker, and Andy Wingo

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http://www.opencontent.org/opl.shtml1)

Table of Contents
I. Overview...1

1. Introduction ..1
What is GStreamer?..1

2. Motivation ...3
Current problems..3

3. Goals...5
The design goals ...5

II. Basic Concepts..7
4. Elements ..7

What is an element ? ..7
Types of elements ...7

5. Pads ..9
Types of pads...9
Capabilities of a pad...9

6. Plugins ...13
7. Linking elements ..15
8. Bins ... 17
9. Buffers ..19
10. Element states ...21

The different element states ..21
The NULL state...21
The READY state ..21
The PAUSED state ..22
The PLAYING state ..22

III. Basic API .. 23
11. Initializing GStreamer ...23

The popt interface...23
12. Elements ..25

Creating a GstElement ...25
GstElement properties ...25
GstElement signals ...26
More about GstElementFactory..26

13. Pads ..27
Types of pads...27
Capabilities of a pad...28

14. Plugins ...31
15. Linking elements ..33

Making simple links ...33
Making filtered links ..33

16. Bins ... 35
Creating a bin ..35
Adding elements to a bin ..35
Custom bins...36
Ghost pads ...36

17. Buffers ..39
18. Element states ...41

Changing element state ...41
IV. Building an application ..43

19. Your first application ...43
Hello world..43
Compiling helloworld.c ...46
Conclusion ...46

20. More on factories..47
The problems with the helloworld example...47
More on MIME Types...47
GStreamer types..48

iii

Creating elements with the factory ..49
GStreamer basic types..49

V. Advanced GStreamer concepts..51
21. Threads ..51

Constraints placed on the pipeline by the GstThread.................................51
When would you want to use a thread? ...51

22. Queues ...55
23. Cothreads ..57

Chain-based elements ..57
Loop-based elements..57

24. Understanding schedulers ..59
25. Clocks in GStreamer ..61
26. Dynamic pipelines ...63
27. Type Detection ..67
28. Autoplugging..69

Using autoplugging..69
Using the GstAutoplugCache element ...70
Another approach to autoplugging ...70

29. Your second application ..73
Autoplugging helloworld ...73

30. Dynamic Parameters..77
Getting Started ..77
Creating and Attaching Dynamic Parameters ...77
Changing Dynamic Parameter Values...78
Different Types of Dynamic Parameter ...78

VI. XML in GStreamer ...81
31. XML in GStreamer ...81

Turning GstElements into XML..81
Loading a GstElement from an XML file ..82
Adding custom XML tags into the core XML data......................................83

VII. Appendices ..85
32. Debugging ...85

Command line options ..85
Adding debugging to a plugin ...85

33. Programs..87
gst-register...87
gst-launch ..87
gst-inspect ...89

34. Components ..91
GstPlay ...91
GstMediaPlay..91
GstEditor ..91

35. GNOME integration ..93
Command line options ..93

36. Quotes from the Developers...95

iv

Chapter 1. Introduction

This chapter gives you an overview of the technologies described in this book.

What is GStreamer?
GStreamer is a framework for creating streaming media applications. The fundamen-
tal design comes from the video pipeline at Oregon Graduate Institute, as well as
some ideas from DirectShow.

GStreamer’s development framework makes it possible to write any type of stream-
ing multimedia application. The GStreamer framework is designed to make it easy to
write applications that handle audio or video or both. It isn’t restricted to audio and
video, and can process any kind of data flow. The pipeline design is made to have
little overhead above what the applied filters induce. This makes GStreamer a good
framework for designing even high-end audio applications which put high demands
on latency.

One of the the most obvious uses of GStreamer is using it to build a media player.
GStreamer already includes components for building a media player that can support
a very wide variety of formats, including MP3, Ogg Vorbis, MPEG1, MPEG2, AVI,
Quicktime, mod, and more. GStreamer, however, is much more than just another
media player. Its main advantages are that the pluggable components can be mixed
and matched into arbitrary pipelines so that it’s possible to write a full-fledged video
or audio editing application.
The framework is based on plugins that will provide the various codec and other
functionality. The plugins can be linked and arranged in a pipeline. This pipeline
defines the flow of the data. Pipelines can also be edited with a GUI editor and saved
as XML so that pipeline libraries can be made with a minimum of effort.

The GStreamer core function is to provide a framework for plugins, data flow and
media type handling/negotiation. It also provides an API to write applications using
the various plugins.

This book is about GStreamer from a developer’s point of view; it describes how to
write a GStreamer application using the GStreamer libraries and tools. For an expla-
nation about writing plugins, we suggest the Plugin Writers Guide.

1

Chapter 1. Introduction

2

Chapter 2. Motivation

Linux has historically lagged behind other operating systems in the multimedia
arena. Microsoft’s Windows™ and Apple’s MacOS™ both have strong support
for multimedia devices, multimedia content creation, playback, and realtime
processing. Linux, on the other hand, has a poorly integrated collection of
multimedia utilities and applications available, which can hardly compete with the
professional level of software available for MS Windows and MacOS.

Current problems
We describe the typical problems in today’s media handling on Linux.

Multitude of duplicate code
The Linux user who wishes to hear a sound file must hunt through their collection of
sound file players in order to play the tens of sound file formats in wide use today.
Most of these players basically reimplement the same code over and over again.

The Linux developer who wishes to embed a video clip in their application must
use crude hacks to run an external video player. There is no library available that a
developer can use to create a custom media player.

’One goal’ media players/libraries
Your typical MPEG player was designed to play MPEG video and audio. Most of
these players have implemented a complete infrastructure focused on achieving their
only goal: playback. No provisions were made to add filters or special effects to the
video or audio data.

If you want to convert an MPEG2 video stream into an AVI file, your best option
would be to take all of the MPEG2 decoding algorithms out of the player and du-
plicate them into your own AVI encoder. These algorithms cannot easily be shared
accross applications.

Attempts have been made to create libraries for handling various media types. Be-
cause they focus on a very specific media type (avifile, libmpeg2, ...), significant work
is needed to integrate them due to a lack of a common API. GStreamer allows you to
wrap these libraries with a common API, which significantly simplifies integration
and reuse.

Non unified plugin mechanisms
Your typical media player might have a plugin for different media types. Two media
players will typically implement their own plugin mechanism so that the codecs can-
not be easily exchanged. The plugin system of the typical media player is also very
tailored to the specific needs of the application.
The lack of a unified plugin mechanism also seriously hinders the creation of bi-
nary only codecs. No company is willing to port their code to all the different plugin
mechanisms.

While GStreamer also uses it own plugin system it offers a very rich framework for
the plugin developper and ensures the plugin can be used in a wide range of appli-
cations, transparently interacting with other plugins. The framework that GStreamer
provides for the plugins is flexible enough to host even the most demanding plugins.

3

Chapter 2. Motivation

Provision for network transparency
No infrastructure is present to allow network transparent media handling. A dis-
tributed MPEG encoder will typically duplicate the same encoder algorithms found
in a non-distributed encoder.

No provisions have been made for emerging technologies such as the GNOME object
embedding using Bonobo1.

The GStreamer core does not use network transparent technologies at the lowest level
as it only adds overhead for the local case. That said, it shouldn’t be hard to create a
wrapper around the core components.

Catch up with the Windows™ world
We need solid media handling if we want to see Linux succeed on the desktop.
We must clear the road for commercially backed codecs and multimedia applications
so that Linux can become an option for doing multimedia.

Notes
1. http://developer.gnome.org/arch/component/bonobo.html

4

Chapter 3. Goals

GStreamer was designed to provide a solution to the current Linux media problems.

The design goals
We describe what we try to achieve with GStreamer.

Clean and powerful
GStreamer wants to provide a clean interface to:

• The application programmer who wants to build a media pipeline. The program-
mer can use an extensive set of powerful tools to create media pipelines without
writing a single line of code. Performing complex media manipulations becomes
very easy.

• The plugin programmer. Plugin programmers are provided a clean and simple API
to create self contained plugins. An extensive debugging and tracing mechanism
has been integrated. GStreamer also comes with an extensive set of real-life plugins
that serve as an example too.

Object oriented
GStreamer adheres to the GLib 2.0 object model. A programmer familiar with GLib
2.0 or older versions of GTK+ will be comfortable with GStreamer.

GStreamer uses the mechanism of signals and object properties.

All objects can be queried at runtime for their various properties and capabilities.

GStreamer intends to be similar in programming methodology to GTK+. This applies
to the object model, ownership of objects, reference counting, ...

Extensible
All GStreamer Objects can be extended using the GObject inheritance methods.

All plugins are loaded dynamically and can be extended and upgraded indepen-
dently.

Allow binary only plugins
Plugins are shared libraries that are loaded at runtime. Since all the properties of the
plugin can be set using the GObject properties, there is no need (and in fact no way)
to have any header files installed for the plugins.

Special care has been taken to make plugins completely selfcontained. All relevant
aspects of plugins can be queried at run-time.

High performance
High performance is obtained by:

• using GLib’s g_mem_chunk and fast non-blocking allocation algorithms where pos-
sible to minimize dynamic memory allocation.

5

Chapter 3. Goals

• extremely light-weight links between plugins. Data can travel the pipeline with
minimal overhead. Data passing between plugins only involves a pointer derefer-
ence in a typical pipeline.

• providing a mechanism to directly work on the target memory. A plugin can for
example directly write to the X server’s shared memory space. Buffers can also
point to arbitrary memory, such as a sound card’s internal hardware buffer.

• refcounting and copy on write minimize usage of memcpy. Sub-buffers efficiently
split buffers into manageable pieces.

• the use of cothreads to minimize the threading overhead. Cothreads are a simple
and fast user-space method for switching between subtasks. Cothreads were mea-
sured to consume as little as 600 cpu cycles.

• allowing hardware acceleration by using specialized plugins.

• using a plugin registry with the specifications of the plugins so that the plugin
loading can be delayed until the plugin is actually used.

• all critical data passing is free of locks and mutexes.

Clean core/plugins separation
The core of GStreamer is essentially media-agnostic. It only knows about bytes and
blocks, and only contains basic elements. The core of GStreamer is functional enough
to even implement low-level system tools, like cp.

All of the media handling functionality is provided by plugins external to the core.
These tell the core how to handle specific types of media.

Provide a framework for codec experimentation
GStreamer also wants to be an easy framework where codec developers can experi-
ment with different algorithms, speeding up the development of open and free mul-
timedia codecs like tarkin and vorbis1.

Notes
1. http://www.xiph.org/ogg/index.html

6

Chapter 4. Elements

The most important object in GStreamer for the application programmer is the
GstElement object.

What is an element ?
An element is the basic building block for the media pipeline. All the different high-
level components you are going to use are derived from GstElement. This means
that a lot of functions you are going to use operate on objects of this class.

Elements, from the perspective of GStreamer, are viewed as "black boxes" with a
number of different aspects. One of these aspects is the presence of "pads" (see
Chapter 5), or link points. This terminology arises from soldering; pads are where
wires can be attached.

Types of elements

Source elements
Source elements generate data for use by a pipeline, for example reading from disk
or from a sound card.

Figure 4-1 shows how we will visualise a source element. We always draw a source
pad to the right of the element.

src

source_element

Figure 4-1. Visualisation of a source element

Source elements do not accept data, they only generate data. You can see this in the
figure because it only has a source pad. A source pad can only generate data.

Filters and codecs
Filter elements have both input and output pads. They operate on data they receive in
their sink pads and produce data on their source pads. For example, MPEG decoders
and volume filters would fall into this category.

Elements are not constrained as to the number of pads they might have; for example,
a video mixer might have two input pads (the images of the two different video
streams) and one output pad.

7

Chapter 4. Elements

src

filter

sink

Figure 4-2. Visualisation of a filter element

Figure 4-2 shows how we will visualise a filter element. This element has one sink
(input) pad and one source (output) pad. Sink pads are drawn on the left of the ele-
ment.

demuxer

sink

video

audio

Figure 4-3. Visualisation of a filter element with more than one output pad

Figure 4-2 shows the visualisation of a filter element with more than one output pad.
An example of such a filter is the AVI demultiplexer. This element will parse the input
data and extract the audio and video data. Most of these filters dynamically send out
a signal when a new pad is created so that the application programmer can link an
arbitrary element to the newly created pad.

Sink elements
Sink elements are end points in a media pipeline. They accept data but do not pro-
duce anything. Disk writing, soundcard playback, and video output would all be
implemented by sink elements. Figure 4-4 shows a sink element.

sink_element

sink

Figure 4-4. Visualisation of a sink element

8

Chapter 5. Pads

As we have seen in Chapter 4, the pads are the element’s interface to the outside
world.
The specific type of media that the element can handle will be exposed by
the pads. The description of this media type is done with capabilities(see
the Section called Capabilities of a pad)

Pads are either source or sink pads. The terminology is defined from the view of the
element itself: elements accept data on their sink pads, and send data out on their
source pads. Sink pads are drawn on the left, while source pads are drawn on the
right of an element. In general, data flows from left to right in the graph.1

Types of pads

Dynamic pads
Some elements might not have all of their pads when the element is created. This
can happen, for example, with an MPEG system demultiplexer. The demultiplexer
will create its pads at runtime when it detects the different elementary streams in the
MPEG system stream.

Running gst-inspect mpegdemux will show that the element has only one pad: a
sink pad called ’sink’. The other pads are "dormant". You can see this in the pad
template because there is an ’Exists: Sometimes’ property. Depending on the type of
MPEG file you play, the pads will be created. We will see that this is very important
when you are going to create dynamic pipelines later on in this manual.

Request pads
An element can also have request pads. These pads are not created automatically but
are only created on demand. This is very useful for multiplexers, aggregators and tee
elements.

The tee element, for example, has one input pad and a request padtemplate for the
output pads. Whenever an element wants to get an output pad from the tee element,
it has to request the pad.

Capabilities of a pad
Since the pads play a very important role in how the element is viewed by the outside
world, a mechanism is implemented to describe the data that can flow through the
pad by using capabilities.

We will briefly describe what capabilities are, enough for you to get a basic under-
standing of the concepts. You will find more information on how to create capabilities
in the Plugin Writer’s Guide.

Capabilities
Capabilities are attached to a pad in order to describe what type of media the pad
can handle.

Capabilities is shorthand for "capability chain". A capability chain is a chain of one
capability or more.

9

Chapter 5. Pads

The basic entity is a capability, and is defined by a name, a MIME type and a set
of properties. A capability can be chained to another capability, which is why we
commonly refer to a chain of capability entities as "capabilities". 2

Below is a dump of the capabilities of the element mad, as shown by gst-inspect. You
can see two pads: sink and src. Both pads have capability information attached to
them.

The sink pad (input pad) is called ’sink’ and takes data of MIME type ’audio/mp3’.
It also has three properties: layer, bitrate and framed.

The source pad (output pad) is called ’src’ and outputs data of MIME type ’au-
dio/raw’. It also has four properties: format, depth, rate and channels.

Pads:
SINK template: ’sink’

Availability: Always
Capabilities:

’mad_sink’:
MIME type: ’audio/mp3’:

SRC template: ’src’
Availability: Always
Capabilities:

’mad_src’:
MIME type: ’audio/raw’:
format: String: int
endianness: Integer: 1234
width: Integer: 16
depth: Integer: 16
channels: Integer range: 1 - 2
law: Integer: 0
signed: Boolean: TRUE
rate: Integer range: 11025 - 48000

What are properties ?
Properties are used to describe extra information for capabilities. A property consists
of a key (a string) and a value. There are different possible value types that can be
used:

• basic types:

• an integer value: the property has this exact value.

• a boolean value: the property is either TRUE or FALSE.

• a fourcc value: this is a value that is commonly used to describe an encoding for
video, as used for example by the AVI specification. 3

• a float value: the property has this exact floating point value.

• a string value.

• range types:

• an integer range value: the property denotes a range of possible integer. For ex-
ample, the wavparse element has a source pad where the "rate" property can go
from 8000 to 48000.

• a float range value: the property denotes a range of possible floating point val-
ues.

10

Chapter 5. Pads

• a list value: the property can take any value from a list of basic value types or range
types.

What capabilities are used for
Capabilities describe in great detail the type of media that is handled by the pads.
They are mostly used for:

• Autoplugging: automatically finding plugins for a set of capabilities

• Compatibility detection: when two pads are linked, GStreamer can verify if the
two pads are talking about the same media types. The process of linking two pads
and checking if they are compatible is called "caps negotiation".

Notes
1. In reality, there is no objection to data flowing from a source pad to the sink pad

of an element upstream. Data will, however, always flow from a source pad of
one element to the sink pad of another.

2. It is important to understand that the term "capabilities" refers to a chain of one
capability or more. This will be clearer when you see the structure definition of a
GstCaps element.

3. fourcc values consist of four bytes.

4. http://www.fourcc.org
is the most complete resource on the allowed fourcc values.

4. http://www.fourcc.org

11

Chapter 5. Pads

12

Chapter 6. Plugins

A plugin is a shared library that contains at least one of the following items:

• one or more element factories

• one or more type definitions

• one or more auto-pluggers

• exported symbols for use in other plugins

13

Chapter 6. Plugins

14

Chapter 7. Linking elements

You can link the different pads of elements together so that the elements form a chain.

src sink sinksrc

filter sink_elementsource_element

Figure 7-1. Visualisation of three linked elements

By linking these three elements, we have created a very simple chain. The effect of
this will be that the output of the source element (element1) will be used as input for
the filter element (element2). The filter element will do something with the data and
send the result to the final sink element (element3).

Imagine the above graph as a simple MPEG audio decoder. The source element is
a disk source, the filter element is the MPEG decoder and the sink element is your
audiocard. We will use this simple graph to construct an MPEG player later in this
manual.

15

Chapter 7. Linking elements

16

Chapter 8. Bins

A bin is a container element. You can add elements to a bin. Since a bin is an element
itself, it can also be added to another bin.
Bins allow you to combine a group of linked elements into one logical element. You
do not deal with the individual elements anymore but with just one element, the bin.
We will see that this is extremely powerful when you are going to construct complex
pipelines since it allows you to break up the pipeline in smaller chunks.

The bin will also manage the elements contained in it. It will figure out how the data
will flow in the bin and generate an optimal plan for that data flow. Plan generation
is one of the most complicated procedures in GStreamer.

src sink sinksrc

element2 element3element1

bin

Figure 8-1. Visualisation of a bin with some elements in it

There are two specialized bins available to the GStreamer programmer:

• a pipeline: a generic container that allows scheduling of the containing elements.
The toplevel bin has to be a pipeline. Every application thus needs at least one of
these.

• a thread: a bin that will be run in a separate execution thread. You will have to use
this bin if you have to carefully synchronize audio and video, or for buffering. You
will learn more about threads in Chapter 21.

17

Chapter 8. Bins

18

Chapter 9. Buffers

Buffers contain the data that will flow through the pipeline you have created. A
source element will typically create a new buffer and pass it through a pad to the
next element in the chain. When using the GStreamer infrastructure to create a me-
dia pipeline you will not have to deal with buffers yourself; the elements will do that
for you.
A buffer consists of:

• a pointer to a piece of memory.

• the size of the memory.

• a timestamp for the buffer.

• A refcount that indicates how many elements are using this buffer. This refcount
will be used to destroy the buffer when no element has a reference to it.

GStreamer provides functions to create custom buffer create/destroy algorithms,
called a GstBufferPool. This makes it possible to efficiently allocate and destroy
buffer memory. It also makes it possible to exchange memory between elements by
passing the GstBufferPool. A video element can, for example, create a custom buffer
allocation algorithm that creates buffers with XSHM as the buffer memory. An ele-
ment can use this algorithm to create and fill the buffer with data.

The simple case is that a buffer is created, memory allocated, data put in it, and
passed to the next element. That element reads the data, does something (like cre-
ating a new buffer and decoding into it), and unreferences the buffer. This causes the
data to be freed and the buffer to be destroyed. A typical MPEG audio decoder works
like this.
A more complex case is when the filter modifies the data in place. It does so and
simply passes on the buffer to the next element. This is just as easy to deal with. An
element that works in place has to be careful when the buffer is used in more than
one element; a copy on write has to made in this situation.

19

Chapter 9. Buffers

20

Chapter 10. Element states

Once you have created a pipeline packed with elements, nothing will happen right
away. This is where the different states come into play.

The different element states
An element can be in one of the following four states:

• NULL: this is the default state all elements are in when they are created and are
doing nothing.

• READY: An element is ready to start doing something.

• PAUSED: The element is paused for a period of time.

• PLAYING: The element is doing something.

All elements start with the NULL state. The elements will go throught the following
state changes: NULL -> READY -> PAUSED -> PLAYING. When going from NULL
to PLAYING, GStreamer will internally go throught the intermediate states.

You can set the following states on an element:

GST_STATE_NULL Reset the state of an element.
GST_STATE_READY will make the element ready to start

processing data.
GST_STATE_PAUSED temporary stops the data flow.
GST_STATE_PLAYING means there really is data flowing

through the graph.

The NULL state
When you created the pipeline all of the elements will be in the NULL state. There is
nothing special about the NULL state.

Note: Don’t forget to reset the pipeline to the NULL state when you are not going to use
it anymore. This will allow the elements to free the resources they might use.

The READY state
You will start the pipeline by first setting it to the READY state. This will allow the
pipeline and all the elements contained in it to prepare themselves for the actions
they are about to perform.

The typical actions that an element will perform in the READY state might be to
open a file or an audio device. Some more complex elements might have a non trivial
action to perform in the READY state such as connecting to a media server using a
CORBA connection.

21

Chapter 10. Element states

Note: You can also go from the NULL to PLAYING state directly without going through
the READY state. This is a shortcut; the framework will internally go through the READY
and the PAUSED state for you.

The PAUSED state
A pipeline that is playing can be set to the PAUSED state. This will temporarily stop
all data flowing through the pipeline.

You can resume the data flow by setting the pipeline back to the PLAYING state.

Note: The PAUSED state is available for temporarily freezing the pipeline. Elements will
typically not free their resources in the PAUSED state. Use the NULL state if you want to
stop the data flow permanently.

The pipeline has to be in the PAUSED or NULL state if you want to insert or modify
an element in the pipeline. We will cover dynamic pipeline behaviour in Chapter 26.

The PLAYING state
A Pipeline that is in the READY state can be started by setting it to the PLAYING
state. At that time data will start to flow all the way through the pipeline.

22

Chapter 11. Initializing GStreamer

When writing a GStreamer application, you can simply include gst/gst.h to get
access to the library functions.
Before the GStreamer libraries can be used, gst_init has to be called from the main
application. This call will perform the necessary initialization of the library as well as
parse the GStreamer-specific command line options.

A typical program would start like this:

#include <gst/gst.h>

...

int
main (int argc, char *argv[])
{
...
gst_init (&argc, &argv);
...

}

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and
GST_VERSION_MICRO macros to get the GStreamer version you are building
against, or use the function gst_version to get the version your application is
linked against.
It is also possible to call the gst_init function with two NULL arguments, in which
case no command line options will parsed by GStreamer.

The popt interface
You can also use a popt table to initialize your own parameters as shown in the next
code fragment:

int
main(int argc, char *argv[])
{
gboolean silent = FALSE;
gchar *savefile = NULL;
struct poptOption options[] = {

{"silent", ’s’, POPT_ARG_NONE|POPT_ARGFLAG_STRIP, &silent, 0,
"do not output status information", NULL},

{"output", ’o’, POPT_ARG_STRING|POPT_ARGFLAG_STRIP, &savefile, 0,
"save xml representation of pipeline to FILE and exit", "FILE"},

POPT_TABLEEND
};

gst_init_with_popt_table (&argc, &argv, options);

...

As shown in this fragment, you can use a popt1 table to define your
application-specific command line options, and pass this table to the function
gst_init_with_popt_table. Your application options will be parsed in addition to
the standard GStreamer options.

Notes
1. http://developer.gnome.org/doc/guides/popt/

23

Chapter 11. Initializing GStreamer

24

Chapter 12. Elements

Creating a GstElement
A GstElement object is created from a factory. To create an element, you have to get
access to a GstElementFactory object using a unique factory name.
The following code example is used to get a factory that can be used to create the
’mad’ element, an mp3 decoder.

GstElementFactory *factory;

factory = gst_element_factory_find ("mad");

Once you have the handle to the element factory, you can create a real element with
the following code fragment:

GstElement *element;

element = gst_element_factory_create (factory, "decoder");

gst_element_factory_create will use the element factory to create an element
with the given name. The name of the element is something you can use later on to
look up the element in a bin, for example. You can pass NULL as the name argument
to get a unique, default name.

A simple shortcut exists for creating an element from a factory. The following exam-
ple creates an element named "decoder" from the element factory named "mad". This
convenience function is most widely used to create an element.

GstElement *element;

element = gst_element_factory_make ("mad", "decoder");

When you don’t need the element anymore, you need to unref it, as shown in the
following example.

GstElement *element;

...
gst_object_unref (GST_OBJECT (element));

GstElement properties
A GstElement can have several properties which are implemented using standard
GObjectproperties. The usual GObjectmethods to query, set and get property values
and GParamSpecs are therefore supported.

Every GstElement inherits at least one property of its parent GstObject: the "name"
property. This is the name you provide to the functions gst_element_factory_make
or gst_element_factory_create. You can get and set this property using the func-
tions gst_object_set_name and gst_object_get_name or use the GObject prop-
erty mechanism as shown below.

GstElement *element;
GValue value = { 0, }; /* initialize the GValue for g_object_get() */

25

Chapter 12. Elements

element = gst_element_factory_make ("mad", "decoder");
g_object_set (G_OBJECT (element), "name", "mydecoder", NULL);
...

g_value_init (&value, G_TYPE_STRING);
g_object_get_property (G_OBJECT (element), "name", &value);
...

Most plugins provide additional properties to provide more information about their
configuration or to configure the element. gst-inspect is a useful tool to query the
properties of a particular element, it will also use property introspection to give a
short explanation about the function of the property and about the parameter types
and ranges it supports.

For more information about GObject properties we recommend you read the GOb-
ject manual1 and an introduction to The Glib Object system2.

GstElement signals
A GstElement also provides various GObject signals that can be used as a flexible
callback mechanism.

More about GstElementFactory
We talk some more about the GstElementFactory object.

Getting information about an element using the factory details

Finding out what pads an element can contain

Different ways of querying the factories

Notes
1. http://developer.gnome.org/doc/API/2.0/gobject/index.html

2. http://le-hacker.org/papers/gobject/index.html

26

Chapter 13. Pads

As we have seen in Chapter 4, the pads are the element’s interface to the outside
world.
The specific type of media that the element can handle will be exposed by
the pads. The description of this media type is done with capabilities(see
the Section called Capabilities of a pad in Chapter 5)

Pads are either source or sink pads. The terminology is defined from the view of the
element itself: elements accept data on their sink pads, and send data out on their
source pads. Sink pads are drawn on the left, while source pads are drawn on the
right of an element. In general, data flows from left to right in the graph.1

Types of pads

Dynamic pads
You can attach a signal to an element to inform you when the element has created a
new pad from one of its padtemplates. The following piece of code is an example of
how to do this:

static void
pad_link_func (GstElement *parser, GstPad *pad, GstElement *pipeline)
{
g_print("***** a new pad %s was created\n", gst_pad_get_name(pad));

gst_element_set_state (pipeline, GST_STATE_PAUSED);

if (strncmp (gst_pad_get_name (pad), "private_stream_1.0", 18) == 0) {
// set up an AC3 decoder pipeline
...
// link pad to the AC3 decoder pipeline
...

}
gst_element_set_state (GST_ELEMENT (audio_thread), GST_STATE_READY);

}

int
main(int argc, char *argv[])
{
GstElement *pipeline;
GstElement *mpeg2parser;

// create pipeline and do something useful
...

mpeg2parser = gst_element_factory_make ("mpegdemux", "mpegdemux");
g_signal_connect (G_OBJECT (mpeg2parser), "new_pad", pad_link_func, pipeline);
...

// start the pipeline
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);
...

}

Note: A pipeline cannot be changed in the PLAYING state.

27

Chapter 13. Pads

Request pads
The following piece of code can be used to get a pad from the tee element. After the
pad has been requested, it can be used to link another element to it.

...
GstPad *pad;

...
element = gst_element_factory_make ("tee", "element");

pad = gst_element_get_request_pad (element, "src%d");
g_print ("new pad %s\n", gst_pad_get_name (pad));

...

The gst_element_get_request_pad method can be used to get a pad from the element
based on the name_template of the padtemplate.

It is also possible to request a pad that is compatible with another pad template. This
is very useful if you want to link an element to a multiplexer element and you need
to request a pad that is compatible. The gst_element_get_compatible_pad is used to
request a compatible pad, as is shown in the next example.

...
GstPadTemplate *templ;
GstPad *pad;

...
element = gst_element_factory_make ("tee", "element");
mad = gst_element_factory_make ("mad", "mad");

templ = gst_element_get_pad_template_by_name (mad, "sink");

pad = gst_element_get_compatible_pad (element, templ);
g_print ("new pad %s\n", gst_pad_get_name (pad));
...

Capabilities of a pad
Since the pads play a very important role in how the element is viewed by the outside
world, a mechanism is implemented to describe the data that can flow through the
pad by using capabilities.
We will briefly describe what capabilities are, enough for you to get a basic under-
standing of the concepts. You will find more information on how to create capabilities
in the Plugin Writer’s Guide.

Capabilities
Capabilities are attached to a pad in order to describe what type of media the pad
can handle.

Its structure is:

struct _GstCaps {
gchar *name; /* the name of this caps */
guint16 id; /* type id (major type) */

guint refcount; /* caps are refcounted */

GstProps *properties; /* properties for this capability */

28

Chapter 13. Pads

GstCaps *next; /* caps can be chained together */
};

Getting the capabilities of a pad
A pad can have a chain of capabilities attached to it. You can get the capabilities chain
with:

GstCaps *caps;
...

caps = gst_pad_get_caps (pad);

g_print ("pad name %s\n", gst_pad_get_name (pad));

while (caps) {
g_print (" Capability name %s, MIME type %s\n",

gst_caps_get_name (cap),
gst_caps_get_mime (cap));

caps = caps->next;
}

...

Creating capability structures
While capabilities are mainly used inside a plugin to describe the media type of the
pads, the application programmer also has to have basic understanding of capabili-
ties in order to interface with the plugins, specially when using the autopluggers.
As we said, a capability has a name, a mime-type and some properties. The signature
of the function to create a new GstCaps structure is:

GstCaps* gst_caps_new (const gchar *name, const gchar *mime, GstProps *props);

You can therefore create a new capability with no properties like this:

GstCaps *newcaps;

newcaps = gst_caps_new ("my_caps", "audio/x-wav", NULL);

GstProps basically consist of a set of key-value pairs and are created with a function
with this signature:

GstProps* gst_props_new (const gchar *firstname, ...);

The keys are given as strings and the values are given with a set of macros:

• GST_PROPS_INT(a): An integer value

• GST_PROPS_FLOAT(a): A floating point value

• GST_PROPS_FOURCC(a): A fourcc value
29

Chapter 13. Pads

• GST_PROPS_BOOLEAN(a): A boolean value

• GST_PROPS_STRING(a): A string value

The values can also be specified as ranges with:

• GST_PROPS_INT_RANGE(a,b): An integer range from a to b
• GST_PROPS_FLOAT_RANGE(a,b): A float ragne from a to b

All of the above values can be given with a list too, using:

• GST_PROPS_LIST(a,...): A list of property values.

A more complex capability with properties is created like this:

GstCaps *newcaps;

newcaps = gst_caps_new ("my_caps",
"audio/x-wav",

gst_props_new (
"bitrate", GST_PROPS_INT_RANGE (11025,22050),
"depth", GST_PROPS_INT (16),
"signed", GST_PROPS_LIST (

GST_PROPS_BOOLEAN (TRUE),
GST_PROPS_BOOLEAN (FALSE)
),

NULL
);

Optionally, the convenient shortcut macro can be used. The above complex capability
can be created with:

GstCaps *newcaps;

newcaps = GST_CAPS_NEW ("my_caps",
"audio/x-wav",

"bitrate", GST_PROPS_INT_RANGE (11025,22050),
"depth", GST_PROPS_INT (16),
"signed", GST_PROPS_LIST (

GST_PROPS_BOOLEAN (TRUE),
GST_PROPS_BOOLEAN (FALSE)
)

);

Notes
1. In reality, there is no objection to data flowing from a source pad to the sink pad

of an element upstream. Data will, however, always flow from a source pad of
one element to the sink pad of another.

30

Chapter 14. Plugins

All plugins should implement one function, plugin_init, that creates all the element
factories and registers all the type definitions contained in the plugin. Without this
function, a plugin cannot be registered.

The plugins are maintained in the plugin system. Optionally, the type definitions
and the element factories can be saved into an XML representation so that the plugin
system does not have to load all available plugins in order to know their definition.

The basic plugin structure has the following fields:

typedef struct _GstPlugin GstPlugin;

struct _GstPlugin {
gchar *name; /* name of the plugin */
gchar *longname; /* long name of plugin */
gchar *filename; /* filename it came from */

GList *types; /* list of types provided */
gint numtypes;
GList *elements; /* list of elements provided */
gint numelements;
GList *autopluggers; /* list of autopluggers provided */
gint numautopluggers;

gboolean loaded; /* if the plugin is in memory */
};

You can query a GList of available plugins with the function gst_plugin_get_list
as this example shows:

GList *plugins;

plugins = gst_plugin_get_list ();

while (plugins) {
GstPlugin *plugin = (GstPlugin *)plugins->data;

g_print ("plugin: %s\n", gst_plugin_get_name (plugin));

plugins = g_list_next (plugins);
}

31

Chapter 14. Plugins

32

Chapter 15. Linking elements

Making simple links
You can link two pads with:

GstPad *srcpad, *sinkpad;

srcpad = gst_element_get_pad (element1, "src");
sinpad = gst_element_get_pad (element2, "sink");

// link them
gst_pad_link (srcpad, sinkpad);

....
// and unlink them
gst_pad_unlink (srcpad, sinkpad);

A convenient shortcut for the above code is done with the gst_element_link_pads ()
function:

// link them
gst_element_link_pads (element1, "src", element2, "sink");

....
// and unlink them
gst_element_unlink_pads (element1, "src", element2, "sink");

An even more convenient shortcut for single-source, single-sink elements is the
gst_element_link () function:

// link them
gst_element_link (element1, element2);

....
// and unlink them
gst_element_unlink (element1, element2);

If you have more than one element to link, the gst_element_link_many () function
takes a NULL-terminated list of elements:

// link them
gst_element_link_many (element1, element2, element3, element4, NULL);

....
// and unlink them
gst_element_unlink_many (element1, element2, element3, element4, NULL);

You can query if a pad is linked with GST_PAD_IS_LINKED (pad).
To query for the GstPad a pad is linked to, use gst_pad_get_peer (pad).

33

Chapter 15. Linking elements

Making filtered links
You can also force a specific media type on the link by using
gst_pad_link_filtered () and gst_element_link_filtered () with capabilities. See
the Section called Capabilities of a pad in Chapter 5 for an explanation of capabilities.

34

Chapter 16. Bins

Creating a bin
Bins are created in the same way that other elements are created. ie. using an element
factory, or any of the associated convenience functions:

GstElement *bin, *thread, *pipeline;

/* create a new bin called ’mybin’. this bin will be only for organizational purposes; a normal
GstBin doesn’t affect plan generation */

bin = gst_element_factory_make ("bin", "mybin");

/* create a new thread, and give it a unique name */
thread = gst_element_factory_make ("thread", NULL);

/* the core bins (GstBin, GstThread, GstPipeline) also have convenience APIs,
gst_<bintype>_new (). these are equivalent to the gst_element_factory_make () syntax. */

pipeline = gst_pipeline_new ("pipeline_name");

Adding elements to a bin
Elements are added to a bin with the following code sample:

GstElement *element;
GstElement *bin;

bin = gst_bin_new ("mybin");

element = gst_element_factory_make ("mpg123", "decoder");
gst_bin_add (GST_BIN (bin), element);
...

Bins and threads can be added to other bins too. This allows you to create nested
bins. Pipelines shouldn’t be added to any other element, though. They are toplevel
bins and they are directly linked to the scheduler.

To get an element from the bin you can use:

GstElement *element;

element = gst_bin_get_by_name (GST_BIN (bin), "decoder");
...

You can see that the name of the element becomes very handy for retrieving the
element from a bin by using the element’s name. gst_bin_get_by_name () will recur-
sively search nested bins.

To get a list of elements in a bin, use:

GList *elements;

elements = gst_bin_get_list (GST_BIN (bin));

while (elements) {
GstElement *element = GST_ELEMENT (elements->data);

g_print ("element in bin: %s\n", GST_OBJECT_NAME (GST_OBJECT (element)));

35

Chapter 16. Bins

elements = g_list_next (elements);
}
...

To remove an element from a bin, use:

GstElement *element;

gst_bin_remove (GST_BIN (bin), element);
...

To add many elements to a bin at the same time, use the gst_bin_add_many () func-
tion. Remember to pass NULL as the last argument.

GstElement *filesrc, *decoder, *audiosink;
GstBin *bin;

/* instantiate the elements and the bins... */

gst_bin_add_many (bin, filesrc, decoder, audiosink, NULL);

Custom bins
The application programmer can create custom bins packed with elements to per-
form a specific task. This allows you to write an MPEG audio decoder with just the
following lines of code:

/* create the mp3player element */
GstElement *mp3player = gst_element_factory_make ("mp3player", "mp3player");
/* set the source mp3 audio file */
g_object_set (G_OBJECT (mp3player), "location", "helloworld.mp3", NULL);
/* start playback */
gst_element_set_state (GST_ELEMENT (mp3player), GST_STATE_PLAYING);
...

/* pause playback */
gst_element_set_state (GST_ELEMENT (mp3player), GST_STATE_PAUSED);
...

/* stop */
gst_element_set_state (GST_ELEMENT (mp3player), GST_STATE_NULL);

Note that the above code assumes that the mp3player bin derives itself from a
GstThread, which begins to play as soon as its state is set to PLAYING. Other bin
types may need explicit iteration. For more information, see Chapter 21.
Custom bins can be created with a plugin or an XML description. You will find more
information about creating custom bin in the Plugin Writers Guide (FIXME ref).

Ghost pads
You can see from Figure 16-1 how a bin has no pads of its own. This is where "ghost
pads" come into play.

36

Chapter 16. Bins

src sink sinksrc

element2 element3element1

bin

sink

Figure 16-1. Visualisation of a GstBin element without ghost pads

A ghost pad is a pad from some element in the bin that has been promoted to the
bin. This way, the bin also has a pad. The bin becomes just another element with a
pad and you can then use the bin just like any other element. This is a very important
feature for creating custom bins.

src sink sinksrc

element2 element3element1

bin

sink

sink

Figure 16-2. Visualisation of a GstBin element with a ghost pad

Figure 16-2 is a representation of a ghost pad. The sink pad of element one is now
also a pad of the bin.

Ghost pads can actually be added to all GstElements and not just GstBins. Use the
following code example to add a ghost pad to a bin:

GstElement *bin;
GstElement *element;

element = gst_element_factory_create ("mad", "decoder");
bin = gst_bin_new ("mybin");

gst_bin_add (GST_BIN (bin), element);

gst_element_add_ghost_pad (bin, gst_element_get_pad (element, "sink"), "sink");

37

Chapter 16. Bins

In the above example, the bin now also has a pad: the pad called ’sink’ of the given
element.

We can now, for example, link the source pad of a filesrc element to the bin with:

GstElement *filesrc;

filesrc = gst_element_factory_create ("filesrc", "disk_reader");

gst_element_link_pads (filesrc, "src", bin, "sink");
...

38

Chapter 17. Buffers

39

Chapter 17. Buffers

40

Chapter 18. Element states

Changing element state
The state of an element can be changed with the following code:

GstElement *bin;

// create a bin, put elements in it and link them
...
gst_element_set_state (bin, GST_STATE_PLAYING);
...

You can set the following states on an element:

GST_STATE_NULL Reset the state of an element.
GST_STATE_READY will make the element ready to start

processing data.
GST_STATE_PAUSED temporary stops the data flow.
GST_STATE_PLAYING means there really is data flowing

through the graph.

41

Chapter 18. Element states

42

Chapter 19. Your first application

This chapter describes the most rudimentary aspects of a GStreamer application, in-
cluding initializing the libraries, creating elements, packing them into a pipeline and
playing, pausing and stopping the pipeline.

Hello world
We will create a simple first application, a complete MP3 player, using standard
GStreamer components. The player will read from a file that is given as the first
argument to the program.

/* example-begin helloworld.c */
#include <gst/gst.h>

int
main (int argc, char *argv[])
{
GstElement *pipeline, *filesrc, *decoder, *audiosink;

gst_init(&argc, &argv);

if (argc != 2) {
g_print ("usage: %s <mp3 filename>\n", argv[0]);
exit (-1);

}

/* create a new pipeline to hold the elements */
pipeline = gst_pipeline_new ("pipeline");

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

/* now it’s time to get the decoder */
decoder = gst_element_factory_make ("mad", "decoder");

/* and an audio sink */
audiosink = gst_element_factory_make ("osssink", "play_audio");

/* add objects to the main pipeline */
gst_bin_add_many (GST_BIN (pipeline), filesrc, decoder, audiosink, NULL);

/* link src to sink */
gst_element_link_many (filesrc, decoder, audiosink, NULL);

/* start playing */
gst_element_set_state (pipeline, GST_STATE_PLAYING);

while (gst_bin_iterate (GST_BIN (pipeline)));

/* stop the pipeline */
gst_element_set_state (pipeline, GST_STATE_NULL);

/* we don’t need a reference to these objects anymore */
gst_object_unref (GST_OBJECT (pipeline));
/* unreffing the pipeline unrefs the contained elements as well */

exit (0);
}
/* example-end helloworld.c */

Let’s go through this example step by step.
43

Chapter 19. Your first application

The first thing you have to do is to include the standard GStreamer headers and
initialize the framework.

#include <gst/gst.h>

...

int
main (int argc, char *argv[])
{
...
gst_init(&argc, &argv);
...

We are going to create three elements and one pipeline. Since all elements share the
same base type, GstElement, we can define them as:

...
GstElement *pipeline, *filesrc, *decoder, *audiosink;
...

Next, we are going to create an empty pipeline. As you have seen in the basic intro-
duction, this pipeline will hold and manage all the elements we are going to pack
into it.

/* create a new pipeline to hold the elements */
pipeline = gst_pipeline_new ("pipeline");

We use the standard constructor for a pipeline: gst_pipeline_new ().

We then create a disk source element. The disk source element is able to read from
a file. We use the standard GObject property mechanism to set a property of the
element: the file to read from.

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

Note: You can check if the filesrc != NULL to verify the creation of the disk source element.

We now create the MP3 decoder element. This assumes that the ’mad’ plugin is in-
stalled on the system where this application is executed.

/* now it’s time to get the decoder */
decoder = gst_element_factory_make ("mad", "decoder");

gst_element_factory_make() takes two arguments: a string that will identify the el-
ement you need and a second argument: how you want to name the element. The
name of the element is something you can choose yourself and might be used to
retrieve the element from a bin/pipeline.

Finally we create our audio sink element. This element will be able to play back the
audio using OSS.

/* and an audio sink */

44

Chapter 19. Your first application

audiosink = gst_element_factory_make ("osssink", "play_audio");

We then add the elements to the pipeline.

/* add objects to the main pipeline */
gst_bin_add_many (GST_BIN (pipeline), filesrc, decoder, audiosink, NULL);

We link the different pads of the elements together like this:

/* link src to sink */
gst_element_link_many (filesrc, decoder, audiosink, NULL);

We now have a created a complete pipeline. We can visualise the pipeline as follows:

pipeline

src

disk_source

sink src

decoder

sink

play_audio

Figure 19-1. The "hello world" pipeline

Everything is now set up to start streaming. We use the following statements to
change the state of the pipeline:

/* start playing */
gst_element_set_state (pipeline, GST_STATE_PLAYING);

Note: GStreamer will take care of the READY and PAUSED state for you when going from
NULL to PLAYING.

Since we do not use threads, nothing will happen yet. We have to call gst_bin_iterate()
to execute one iteration of the pipeline.

while (gst_bin_iterate (GST_BIN (pipeline)));

The gst_bin_iterate() function will return TRUE as long as something interesting hap-
pened inside the pipeline. When the end-of-file has been reached the _iterate function
will return FALSE and we can end the loop.

/* stop the pipeline */
gst_element_set_state (pipeline, GST_STATE_NULL);

45

Chapter 19. Your first application

gst_object_unref (GST_OBJECT (pipeline));

exit (0);

Note: Don’t forget to set the state of the pipeline to NULL. This will free all of the resources
held by the elements.

Compiling helloworld.c
To compile the helloworld example, use:

gcc -Wall ‘pkg-config gstreamer-0.8 --cflags --libs‘ helloworld.c \
-o helloworld

We use pkg-config to get the compiler flags needed to compile this application. Make
sure to have your PKG_CONFIG_PATH environment variable set to the correct loca-
tion if you are building this application against the uninstalled location.

You can run the example with (substitute helloworld.mp3 with you favorite MP3
file):

./helloworld helloworld.mp3

Conclusion
This concludes our first example. As you see, setting up a pipeline is very low-level
but powerful. You will see later in this manual how you can create a custom MP3
element with a higher-level API.

It should be clear from the example that we can very easily replace the filesrc element
with an httpsrc element, giving you instant network streaming. An element could be
built to handle icecast connections, for example.

We can also choose to use another type of sink instead of the audiosink. We could use
a filesink to write the raw samples to a file, for example. It should also be clear that
inserting filters, like a stereo effect, into the pipeline is not that hard to do. The most
important thing is that you can reuse already existing elements.

46

Chapter 20. More on factories

The small application we created in the previous chapter used the concept of a fac-
tory to create the elements. In this chapter we will show you how to use the factory
concepts to create elements based on what they do instead of what they are called.

We will first explain the concepts involved before we move on to the reworked hel-
loworld example using autoplugging.

The problems with the helloworld example
If we take a look at how the elements were created in the previous example we used
a rather crude mechanism:

...
/* now it’s time to get the parser */
decoder = gst_element_factory_make ("mad", "decoder");
...

While this mechanism is quite effective it also has some big problems: The elements
are created based on their name. Indeed, we create an element, mad, by explicitly
stating the mad element’s name. Our little program therefore always uses the mad
decoder element to decode the MP3 audio stream, even if there are three other MP3
decoders in the system. We will see how we can use a more general way to create an
MP3 decoder element.

We have to introduce the concept of MIME types and capabilities added to the source
and sink pads.

More on MIME Types
GStreamer uses MIME types to identify the different types of data that can be han-
dled by the elements. They are the high level mechanisms to make sure that everyone
is talking about the right kind of data.

A MIME (Multipurpose Internet Mail Extension) type is a pair of strings that denote
a certain type of data. Examples include:

• audio/raw : raw audio samples

• audio/mpeg : MPEG audio

• video/mpeg : MPEG video

An element must associate a MIME type to its source and sink pads when it is loaded
into the system. GStreamer knows about the different elements and what type of data
they expect and emit. This allows for very dynamic and extensible element creation
as we will see.

As we have seen in the previous chapter, MIME types are added to the Capability
structure of a pad.

Figure 20-1 shows the MIME types associated with each pad from the "hello world"
example.

47

Chapter 20. More on factories

bin

src sink src sink src sink

disk_source parse decoder play_audio

? audio/raw
audio/mpeg

audio/rawaudio/mpeg

audio/mpeg

Figure 20-1. The Hello world pipeline with MIME types

We will see how you can create an element based on the MIME types of its source
and sink pads. This way the end-user will have the ability to choose his/her favorite
audio/mpeg decoder without you even having to care about it.

The typing of the source and sink pads also makes it possible to ’autoplug’ a pipeline.
We will have the ability to say: "construct a pipeline that does an audio/mpeg to
audio/raw conversion".

Note: The basic GStreamer library does not try to solve all of your autoplug problems. It
leaves the hard decisions to the application programmer, where they belong.

GStreamer types
GStreamer assigns a unique number to all registered MIME types. GStreamer also
keeps a reference to a function that can be used to determine if a given buffer is of
the given MIME type.

There is also an association between a MIME type and a file extension, but the use of
typefind functions (similar to file(1)) is preferred.

The type information is maintained in a list of GstType. The definition of a GstType
is like:

typedef GstCaps (*GstTypeFindFunc) (GstBuffer *buf,gpointer *priv);

typedef struct _GstType GstType;

struct _GstType {
guint16 id; /* type id (assigned) */

gchar *mime; /* MIME type */
gchar *exts; /* space-delimited list of extensions */

GstTypeFindFunc typefindfunc; /* typefind function */
};

48

Chapter 20. More on factories

All operations on GstType occur via their guint16 id numbers, with the GstType
structure private to the GStreamer library.

MIME type to id conversion
We can obtain the id for a given MIME type with the following piece of code:

guint16 id;

id = gst_type_find_by_mime ("audio/mpeg");

This function will return 0 if the type was not known.

id to GstType conversion
We can obtain the GstType for a given id with the following piece of code:

GstType *type;

type = gst_type_find_by_id (id);

This function will return NULL if the id was not associated with any known GstType

extension to id conversion
We can obtain the id for a given file extension with the following piece of code:

guint16 id;

id = gst_type_find_by_ext (".mp3");

This function will return 0 if the extension was not known.

For more information, see Chapter 28.

Creating elements with the factory
In the previous section we described how you could obtain an element factory using
MIME types. One the factory has been obtained, you can create an element using:

GstElementFactory *factory;
GstElement *element;

// obtain the factory
factory = ...

element = gst_element_factory_create (factory, "name");

This way, you do not have to create elements by name which allows the end-user to
select the elements he/she prefers for the given MIME types.

49

Chapter 20. More on factories

GStreamer basic types
GStreamer only has two builtin types:

• audio/raw : raw audio samples
• video/raw and image/raw : raw video data

All other MIME types are maintained by the plugin elements.

50

Chapter 21. Threads

GStreamer has support for multithreading through the use of the GstThread object.
This object is in fact a special GstBin that will become a thread when started.
To construct a new thread you will perform something like:

GstElement *my_thread;

/* create the thread object */
my_thread = gst_thread_new ("my_thread");
/* you could have used gst_element_factory_make ("thread", "my_thread"); */
g_return_if_fail (my_thread != NULL);

/* add some plugins */
gst_bin_add (GST_BIN (my_thread), GST_ELEMENT (funky_src));
gst_bin_add (GST_BIN (my_thread), GST_ELEMENT (cool_effect));

/* link the elements here... */
...

/* start playing */
gst_element_set_state (GST_ELEMENT (my_thread), GST_STATE_PLAYING);

The above program will create a thread with two elements in it. As soon as it is set to
the PLAYING state, the thread will start to iterate itself. You never need to explicitly
iterate a thread.

Constraints placed on the pipeline by the GstThread
Within the pipeline, everything is the same as in any other bin. The difference lies at
the thread boundary, at the link between the thread and the outside world (contain-
ing bin). Since GStreamer is fundamentally buffer-oriented rather than byte-oriented,
the natural solution to this problem is an element that can "buffer" the buffers be-
tween the threads, in a thread-safe fashion. This element is the queue, described
more fully in Chapter 22. It doesn’t matter if the queue is placed in the containing
bin or in the thread itself, but it needs to be present on one side or the other to enable
inter-thread communication.

When would you want to use a thread?
If you are writing a GUI application, making the top-level bin a thread will make
your GUI more responsive. If it were a pipeline instead, it would have to be iterated
by your application’s event loop, which increases the latency between events (say,
keyboard presses) and responses from the GUI. In addition, any slight hang in the
GUI would delay iteration of the pipeline, which (for example) could cause pops in
the output of the sound card, if it is an audio pipeline.

Figure 21-1 shows how a thread can be visualised.

51

Chapter 21. Threads

sink src sink src sink

disk_source parse decoder play_audio

thread

src

Figure 21-1. A thread

As an example we show the helloworld program using a thread.

/* example-begin threads.c */
#include <gst/gst.h>

/* we set this to TRUE right before gst_main (), but there could still
be a race condition between setting it and entering the function */

gboolean can_quit = FALSE;

/* eos will be called when the src element has an end of stream */
void
eos (GstElement *src, gpointer data)
{
GstThread *thread = GST_THREAD (data);
g_print ("have eos, quitting\n");

/* stop the bin */
gst_element_set_state (GST_ELEMENT (thread), GST_STATE_NULL);

while (!can_quit) /* waste cycles */ ;
gst_main_quit ();

}

int
main (int argc, char *argv[])
{
GstElement *filesrc, *demuxer, *decoder, *converter, *audiosink;
GstElement *thread;

if (argc < 2) {
g_print ("usage: %s <Ogg/Vorbis filename>\n", argv[0]);
exit (-1);

}

gst_init (&argc, &argv);

/* create a new thread to hold the elements */
thread = gst_thread_new ("thread");
g_assert (thread != NULL);

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_assert (filesrc != NULL);
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);
g_signal_connect (G_OBJECT (filesrc), "eos",

G_CALLBACK (eos), thread);

/* create an ogg demuxer */

52

Chapter 21. Threads

demuxer = gst_element_factory_make ("oggdemux", "demuxer");
g_assert (demuxer != NULL);

/* create a vorbis decoder */
decoder = gst_element_factory_make ("vorbisdec", "decoder");
g_assert (decoder != NULL);

/* create an audio converter */
converter = gst_element_factory_make ("audioconvert", "converter");
g_assert (decoder != NULL);

/* and an audio sink */
audiosink = gst_element_factory_make ("osssink", "play_audio");
g_assert (audiosink != NULL);

/* add objects to the thread */
gst_bin_add_many (GST_BIN (thread), filesrc, demuxer, decoder, converter, audiosink, NULL);
/* link them in the logical order */
gst_element_link_many (filesrc, demuxer, decoder, converter, audiosink, NULL);

/* start playing */
gst_element_set_state (thread, GST_STATE_PLAYING);

/* do whatever you want here, the thread will be playing */
g_print ("thread is playing\n");

can_quit = TRUE;
gst_main ();

gst_object_unref (GST_OBJECT (thread));

exit (0);
}
/* example-end threads.c */

53

Chapter 21. Threads

54

Chapter 22. Queues

A queue is a filter element. Queues can be used to link two elements in such way that
the data can be buffered.
A buffer that is sinked to a Queue will not automatically be pushed to the next
linked element but will be buffered. It will be pushed to the next element as soon
as a gst_pad_pull () is called on the queue’s source pad.

Queues are mostly used in conjunction with a thread bin to provide an external link
for the thread’s elements. You could have one thread feeding buffers into a queue
and another thread repeatedly pulling on the queue to feed its internal elements.
Below is a figure of a two-threaded decoder. We have one thread (the main execution
thread) reading the data from a file, and another thread decoding the data.

sink src sink src sink

parse decoder play_audio

thread

disk_source
queue

src

Figure 22-1. a two-threaded decoder with a queue

The standard GStreamer queue implementation has some properties that can be
changed using the g_objet_set () method. To set the maximum number of buffers
that can be queued to 30, do:

g_object_set (G_OBJECT (queue), "max_level", 30, NULL);

The following MP3 player shows you how to create the above pipeline using a thread
and a queue.

/* example-begin queue.c */
#include <stdlib.h>
#include <gst/gst.h>

gboolean playing;

/* eos will be called when the src element has an end of stream */
void
eos (GstElement *element, gpointer data)
{
g_print ("have eos, quitting\n");

playing = FALSE;
}

int
main (int argc, char *argv[])
{

55

Chapter 22. Queues

GstElement *filesrc, *audiosink, *queue, *decode;
GstElement *bin;
GstElement *thread;

gst_init (&argc,&argv);

if (argc != 2) {
g_print ("usage: %s <mp3 filename>\n", argv[0]);
exit (-1);

}

/* create a new thread to hold the elements */
thread = gst_thread_new ("thread");
g_assert (thread != NULL);

/* create a new bin to hold the elements */
bin = gst_bin_new ("bin");
g_assert (bin != NULL);

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_assert (filesrc != NULL);
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);
g_signal_connect (G_OBJECT (filesrc), "eos",

G_CALLBACK (eos), thread);

queue = gst_element_factory_make ("queue", "queue");
g_assert (queue != NULL);

/* and an audio sink */
audiosink = gst_element_factory_make ("osssink", "play_audio");
g_assert (audiosink != NULL);

decode = gst_element_factory_make ("mad", "decode");

/* add objects to the main bin */
gst_bin_add_many (GST_BIN (thread), decode, audiosink, NULL);

gst_bin_add_many (GST_BIN (bin), filesrc, queue, thread, NULL);

gst_element_link (filesrc, queue);
gst_element_link_many (queue, decode, audiosink, NULL);

/* start playing */
gst_element_set_state (GST_ELEMENT (bin), GST_STATE_PLAYING);

playing = TRUE;

while (playing) {
gst_bin_iterate (GST_BIN (bin));

}

gst_element_set_state (GST_ELEMENT (bin), GST_STATE_NULL);

return 0;
}
/* example-end queue.c */

56

Chapter 23. Cothreads

Cothreads are user-space threads that greatly reduce context switching overhead in-
troduced by regular kernel threads. Cothreads are also used to handle the more com-
plex elements. They differ from other user-space threading libraries in that they are
scheduled explictly by GStreamer.

A cothread is created by a GstBin whenever an element is found inside the bin that
has one or more of the following properties:

• The element is loop-based instead of chain-based

• The element has multiple input pads

• The element has the MULTI_IN flag set

The GstBin will create a cothread context for all the elements in the bin so that the
elements will interact in cooperative multithreading.

Before proceding to the concept of loop-based elements we will first explain the
chain-based elements.

Chain-based elements
Chain based elements receive a buffer of data and are supposed to handle the data
and perform a gst_pad_push.
The basic main function of a chain-based element is like:

static void
chain_function (GstPad *pad, GstBuffer *buffer)
{
GstBuffer *outbuffer;

....
// process the buffer, create a new outbuffer
...

gst_pad_push (srcpad, outbuffer);
}

Chain based function are mainly used for elements that have a one to one relation
between their input and output behaviour. An example of such an element can be a
simple video blur filter. The filter takes a buffer in, performs the blur operation on it
and sends out the resulting buffer.

Another element, for example, is a volume filter. The filter takes audio samples as
input, performs the volume effect and sends out the resulting buffer.

Loop-based elements
As opposed to chain-based elements, loop-based elements enter an infinite loop that
looks like this:

GstBuffer *buffer, *outbuffer;

while (1) {
buffer = gst_pad_pull (sinkpad);
...
// process buffer, create outbuffer
while (!done) {

....

57

Chapter 23. Cothreads

// optionally request another buffer
buffer = gst_pad_pull (sinkpad);
....

}
...
gst_pad_push (srcpad, outbuffer);

}

The loop-based elements request a buffer whenever they need one.

When the request for a buffer cannot be immediately satisfied, the control will be
given to the source element of the loop-based element until it performs a push on its
source pad. At that time the control is handed back to the loop-based element, etc...
The execution trace can get fairly complex using cothreads when there are multi-
ple input/output pads for the loop-based element. Cothread switches are performed
within the call to gst_pad_pull and gst_pad_push; from the perspective of the loop-
based element, it just "appears" that gst_pad_push (or _pull) might take a long time
to return.

Loop based elements are mainly used for the more complex elements that need a
specific amount of data before they can start to produce output. An example of such
an element is the MPEG video decoder. The element will pull a buffer, perform some
decoding on it and optionally request more buffers to decode, and when a complete
video frame has been decoded, a buffer is sent out. For example, any plugin using
the bytestream library will need to be loop-based.

There is no problem in putting cothreaded elements into a GstThread to create even
more complex pipelines with both user and kernel space threads.

58

Chapter 24. Understanding schedulers

The scheduler is responsible for managing the plugins at runtime. Its main responsi-
bilities are:

• Preparing the plugins so they can be scheduled.

• Monitoring state changes and enabling/disabling the element in the chain.

• Choosing an element as the entry point for the pipeline.

• Selecting and distributing the global clock.

The scheduler is a pluggable component; this means that alternative schedulers can
be written and plugged into GStreamer. The default scheduler uses cothreads to
schedule the plugins in a pipeline. Cothreads are fast and lightweight user-space
threads.

There is usually no need to interact with the scheduler directly, however in some
cases it is feasible to set a specific clock or force a specific plugin as the entry point in
the pipeline.

59

Chapter 24. Understanding schedulers

60

Chapter 25. Clocks in GStreamer

61

Chapter 25. Clocks in GStreamer

62

Chapter 26. Dynamic pipelines

In this chapter we will see how you can create a dynamic pipeline. A dynamic
pipeline is a pipeline that is updated or created while data is flowing through it.
We will create a partial pipeline first and add more elements while the pipeline is
playing. Dynamic pipelines cause all sorts of scheduling issues and will remain a
topic of research for a long time in GStreamer.
We will show how to create an MPEG1 video player using dynamic pipelines. As
you have seen in the pad section, we can attach a signal to an element when a pad is
created. We will use this to create our MPEG1 player.

We’ll start with a simple main function:

/* example-begin dynamic.c */
#include <string.h>
#include <gst/gst.h>

void
eof (GstElement *src)
{
g_print ("have eos, quitting\n");
exit (0);

}

gboolean
idle_func (gpointer data)
{
gst_bin_iterate (GST_BIN (data));
return TRUE;

}

void
new_pad_created (GstElement *parse, GstPad *pad, GstElement *pipeline)
{
GstElement *decode_video = NULL;
GstElement *decode_audio, *play, *color, *show;
GstElement *audio_queue, *video_queue;
GstElement *audio_thread, *video_thread;

g_print ("***** a new pad %s was created\n", gst_pad_get_name (pad));

gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PAUSED);

/* link to audio pad */
if (strncmp (gst_pad_get_name (pad), "audio_", 6) == 0) {

/* construct internal pipeline elements */
decode_audio = gst_element_factory_make ("mad", "decode_audio");
g_return_if_fail (decode_audio != NULL);
play = gst_element_factory_make ("osssink", "play_audio");
g_return_if_fail (play != NULL);

/* create the thread and pack stuff into it */
audio_thread = gst_thread_new ("audio_thread");
g_return_if_fail (audio_thread != NULL);

/* construct queue and link everything in the main pipeline */
audio_queue = gst_element_factory_make ("queue", "audio_queue");
g_return_if_fail (audio_queue != NULL);

gst_bin_add_many (GST_BIN (audio_thread),
audio_queue, decode_audio, play, NULL);

/* set up pad links */

63

Chapter 26. Dynamic pipelines

gst_element_add_ghost_pad (audio_thread,
gst_element_get_pad (audio_queue, "sink"),
"sink");

gst_element_link (audio_queue, decode_audio);
gst_element_link (decode_audio, play);

gst_bin_add (GST_BIN (pipeline), audio_thread);

gst_pad_link (pad, gst_element_get_pad (audio_thread, "sink"));

/* set up thread state and kick things off */
g_print ("setting to READY state\n");
gst_element_set_state (GST_ELEMENT (audio_thread), GST_STATE_READY);

}
else if (strncmp (gst_pad_get_name (pad), "video_", 6) == 0) {

/* construct internal pipeline elements */
decode_video = gst_element_factory_make ("mpeg2dec", "decode_video");
g_return_if_fail (decode_video != NULL);

color = gst_element_factory_make ("colorspace", "color");
g_return_if_fail (color != NULL);

show = gst_element_factory_make ("xvideosink", "show");
g_return_if_fail (show != NULL);

/* construct queue and link everything in the main pipeline */
video_queue = gst_element_factory_make ("queue", "video_queue");
g_return_if_fail (video_queue != NULL);

/* create the thread and pack stuff into it */
video_thread = gst_thread_new ("video_thread");
g_return_if_fail (video_thread != NULL);
gst_bin_add_many (GST_BIN (video_thread), video_queue,

decode_video, color, show, NULL);

/* set up pad links */
gst_element_add_ghost_pad (video_thread,

gst_element_get_pad (video_queue, "sink"),
"sink");

gst_element_link (video_queue, decode_video);
gst_element_link_many (decode_video, color, show, NULL);

gst_bin_add (GST_BIN (pipeline), video_thread);

gst_pad_link (pad, gst_element_get_pad (video_thread, "sink"));

/* set up thread state and kick things off */
g_print ("setting to READY state\n");
gst_element_set_state (GST_ELEMENT (video_thread), GST_STATE_READY);

}
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);

}

int
main (int argc, char *argv[])
{
GstElement *pipeline, *src, *demux;

gst_init (&argc, &argv);

pipeline = gst_pipeline_new ("pipeline");
g_return_val_if_fail (pipeline != NULL, -1);

64

Chapter 26. Dynamic pipelines

src = gst_element_factory_make ("filesrc", "src");
g_return_val_if_fail (src != NULL, -1);
if (argc < 2)

g_error ("Please specify a video file to play !");

g_object_set (G_OBJECT (src), "location", argv[1], NULL);

demux = gst_element_factory_make ("mpegdemux", "demux");
g_return_val_if_fail (demux != NULL, -1);

gst_bin_add_many (GST_BIN (pipeline), src, demux, NULL);

g_signal_connect (G_OBJECT (demux), "new_pad",
G_CALLBACK (new_pad_created), pipeline);

g_signal_connect (G_OBJECT (src), "eos",
G_CALLBACK (eof), NULL);

gst_element_link (src, demux);

gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);

g_idle_add (idle_func, pipeline);

gst_main ();

return 0;
}
/* example-end dynamic.c */

We create two elements: a file source and an MPEG demuxer. There’s nothing spe-
cial about this piece of code except for the signal ’new_pad’ that we linked to the
mpegdemux element using:

g_signal_connect (G_OBJECT (demux), "new_pad",
G_CALLBACK (new_pad_created), pipeline);

When an elementary stream has been detected in the system stream, mpegdemux
will create a new pad that will provide the data of the elementary stream. A function
’new_pad_created’ will be called when the pad is created.

In the above example, we created new elements based on the name of the newly
created pad. We then added them to a new thread. There are other possibilities to
check the type of the pad, for example by using the MIME type and the properties of
the pad.

65

Chapter 26. Dynamic pipelines

66

Chapter 27. Type Detection

Sometimes the capabilities of a pad are not specificied. The filesrc element, for exam-
ple, does not know what type of file it is reading. Before you can attach an element
to the pad of the filesrc, you need to determine the media type in order to be able to
choose a compatible element.

To solve this problem, a plugin can provide the GStreamer core library with a type
definition. The type definition will contain the following information:

• The MIME type we are going to define.

• An optional string with a list of possible file extensions this type usually is associ-
ated with. the list entries are separated with a space. eg, ".mp3 .mpa .mpg".

• An optional typefind function.

The typefind functions give a meaning to the MIME types that are used in GStreamer.
The typefind function is a function with the following definition:

typedef GstCaps *(*GstTypeFindFunc) (GstBuffer *buf, gpointer priv);

This typefind function will inspect a GstBuffer with data and will output a GstCaps
structure describing the type. If the typefind function does not understand the buffer
contents, it will return NULL.
GStreamer has a typefind element in the set of core elements that can be used to
determine the type of a given pad.

The next example will show how a typefind element can be inserted into a pipeline to
detect the media type of a file. It will output the capabilities of the pad into an XML
representation.

#include <gst/gst.h>

void type_found (GstElement *typefind, GstCaps* caps);

int
main(int argc, char *argv[])
{
GstElement *bin, *filesrc, *typefind;

gst_init (&argc, &argv);

if (argc != 2) {
g_print ("usage: %s <filename>\n", argv[0]);
exit (-1);

}

/* create a new bin to hold the elements */
bin = gst_bin_new ("bin");
g_assert (bin != NULL);

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_assert (filesrc != NULL);
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

/* create the typefind element */
typefind = gst_element_factory_make ("typefind", "typefind");
g_assert (typefind != NULL);

/* add objects to the main pipeline */

67

Chapter 27. Type Detection

gst_bin_add_many (GST_BIN (bin), filesrc, typefind, NULL);

g_signal_connect (G_OBJECT (typefind), "have_type",
G_CALLBACK (type_found), NULL);

gst_element_link (filesrc, typefind);

/* start playing */
gst_element_set_state (GST_ELEMENT (bin), GST_STATE_PLAYING);

gst_bin_iterate (GST_BIN (bin));

gst_element_set_state (GST_ELEMENT (bin), GST_STATE_NULL);

exit (0);
}

We create a very simple pipeline with only a filesrc and the typefind element in it.
The sinkpad of the typefind element has been linked to the source pad of the filesrc.

We attached a signal ’have_type’ to the typefind element which will be called when
the type of the media stream as been detected.

The typefind function will loop over all the registered types and will execute each of
the typefind functions. As soon as a function returns a GstCaps pointer, the
type_found function will be called:

void
type_found (GstElement *typefind, GstCaps* caps)
{
xmlDocPtr doc;
xmlNodePtr parent;

doc = xmlNewDoc ("1.0");
doc->root = xmlNewDocNode (doc, NULL, "Capabilities", NULL);

parent = xmlNewChild (doc->root, NULL, "Caps1", NULL);
gst_caps_save_thyself (caps, parent);

xmlDocDump (stdout, doc);
}

In the type_found function we can print or inspect the type that has been detected
using the GstCaps APIs. In this example, we just print out the XML representation of
the caps structure to stdout.

A more useful option would be to use the registry to look up an element that can
handle this particular caps structure, or we can also use the autoplugger to link this
caps structure to, for example, a videosink.

68

Chapter 28. Autoplugging

GStreamer provides an API to automatically construct complex pipelines based on
source and destination capabilities. This feature is very useful if you want to convert
type X to type Y but don’t care about the plugins needed to accomplish this task. The
autoplugger will consult the plugin repository, select and link the elements needed
for the conversion.
The autoplugger API is implemented in an abstract class. Autoplugger implementa-
tions reside in plugins and are therefore optional and can be optimized for a specific
task. Two types of autopluggers exist: renderer ones and non-renderer ones. The ren-
derer autopluggers will not have any source pads while the non-renderer ones do.
The renderer autopluggers are mainly used for media playback while the non ren-
derer ones are used for arbitrary format conversion.

Using autoplugging
You first need to create a suitable autoplugger with gst_autoplug_factory_make().
The name of the autoplugger must be one of the registered autopluggers..

A list of all available autopluggers can be obtained with
gst_autoplug_factory_get_list().
If the autoplugger supports the RENDERER API, use the
gst_autoplug_to_renderers() function to create a bin that links the source caps to the
specified render elements. You can then add the bin to a pipeline and run it.

GstAutoplug *autoplug;
GstElement *element;
GstElement *sink;

/* create a static autoplugger */
autoplug = gst_autoplug_factory_make ("staticrender");

/* create an osssink */
sink = gst_element_factory_make ("osssink", "our_sink");

/* create an element that can play audio/mp3 through osssink */
element = gst_autoplug_to_renderers (autoplug,

gst_caps_new (
"sink_audio_caps",
"audio/mp3",
NULL

),
sink,
NULL);

/* add the element to a bin and link the sink pad */
...

If the autoplugger supports the CAPS API, use the gst_autoplug_to_caps() function
to link the source caps to the destination caps. The created bin will have source and
sink pads compatible with the provided caps.

GstAutoplug *autoplug;
GstElement *element;

/* create a static autoplugger */
autoplug = gst_autoplug_factory_make ("static");

69

Chapter 28. Autoplugging

/* create an element that converts audio/mp3 to audio/raw */
element = gst_autoplug_to_caps (autoplug,

gst_caps_new (
"sink_audio_caps",
"audio/mp3",
NULL

),
gst_caps_new (

"src_audio_caps",
"audio/raw",
NULL

),
NULL);

/* add the element to a bin and link the src/sink pads */
...

Using the GstAutoplugCache element
The GstAutoplugCache element is used to cache the media stream when perform-
ing typedetection. As we have seen in Chapter 27, the typefind function consumes
a buffer to determine its media type. After we have set up the pipeline to play the
media stream we should be able to ’replay’ the previous buffer(s). This is what the
autoplugcache is used for.

The basic usage pattern for the autoplugcache in combination with the typefind ele-
ment is like this:

1. Add the autoplugcache element to a bin and link the sink pad to the source
pad of an element with unknown caps.

2. Link the source pad of the autoplugcache to the sink pad of the typefind ele-
ment.

3. Iterate the pipeline until the typefind element has found a type.

4. Remove the typefind element and add the plugins needed to play back the
discovered media type to the autoplugcache source pad.

5. Reset the cache to start playback of the cached data. Connect to the
"cache_empty" signal.

6. In the cache_empty signal callback function, remove the autoplugcache and
relink the pads.

In the next chapter we will create a new version of our helloworld example using the
autoplugger, the autoplugcache and the typefind element.

Another approach to autoplugging
The autoplug API is interesting, but often impractical. It is static; it cannot deal with
dynamic pipelines. An element that will automatically figure out and decode the type
is more useful. Enter the spider.

70

Chapter 28. Autoplugging

The spider element
The spider element is a generalized autoplugging element. At this point (April 2002),
it’s the best we’ve got; it can be inserted anywhere within a pipeline to perform caps
conversion, if possible. Consider the following gst-launch line:

$ gst-launch filesrc location=my.mp3 ! spider ! osssink

The spider will detect the type of the stream, autoplug it to the osssink’s caps, and
play the pipeline. It’s neat.

Spider features

1. Automatically typefinds the incoming stream.
2. Has request pads on the source side. This means that it can autoplug one

source stream into many sink streams. For example, an MPEG1 system stream
can have audio as well as video; that pipeline would be represented in gst-
launch syntax as

$ gst-launch filesrc location=my.mpeg1 ! spider ! { queue ! osssink } spider.src_%d!
{ queue ! xvideosink }

71

Chapter 28. Autoplugging

72

Chapter 29. Your second application

FIXME: delete this section, talk more about the spider. In a previous chapter we cre-
ated a first version of the helloworld application. We then explained a better way of
creating the elements using factories identified by MIME types and the autoplugger.

Autoplugging helloworld
We will create a second version of the helloworld application using autoplugging. Its
source code is a bit more complicated but it can handle many more data types. It can
even play the audio track of a video file.
Here is the full program listing. Start by looking at the main () function.

/* example-begin helloworld2.c */
#include <gst/gst.h>

static void gst_play_have_type (GstElement *typefind, GstCaps *caps, GstElement *pipeline);
static void gst_play_cache_empty (GstElement *element, GstElement *pipeline);

static void
gst_play_have_type (GstElement *typefind, GstCaps *caps, GstElement *pipeline)
{
GstElement *osssink;
GstElement *new_element;
GstAutoplug *autoplug;
GstElement *autobin;
GstElement *filesrc;
GstElement *cache;

g_print ("GstPipeline: play have type\n");

gst_element_set_state (pipeline, GST_STATE_PAUSED);

filesrc = gst_bin_get_by_name (GST_BIN (pipeline), "disk_source");
autobin = gst_bin_get_by_name (GST_BIN (pipeline), "autobin");
cache = gst_bin_get_by_name (GST_BIN (autobin), "cache");

/* unlink the typefind from the pipeline and remove it */
gst_element_unlink (cache, typefind);
gst_bin_remove (GST_BIN (autobin), typefind);

/* and an audio sink */
osssink = gst_element_factory_make ("osssink", "play_audio");
g_assert (osssink != NULL);

autoplug = gst_autoplug_factory_make ("staticrender");
g_assert (autoplug != NULL);

new_element = gst_autoplug_to_renderers (autoplug, caps, osssink, NULL);

if (!new_element) {
g_print ("could not autoplug, no suitable codecs found...\n");
exit (-1);

}

gst_element_set_name (new_element, "new_element");

gst_bin_add (GST_BIN (autobin), new_element);

g_object_set (G_OBJECT (cache), "reset", TRUE, NULL);

gst_element_link (cache, new_element);

73

Chapter 29. Your second application

gst_element_set_state (pipeline, GST_STATE_PLAYING);
}

static void
gst_play_cache_empty (GstElement *element, GstElement *pipeline)
{
GstElement *autobin;
GstElement *filesrc;
GstElement *cache;
GstElement *new_element;

g_print ("have cache empty\n");

gst_element_set_state (pipeline, GST_STATE_PAUSED);

filesrc = gst_bin_get_by_name (GST_BIN (pipeline), "disk_source");
autobin = gst_bin_get_by_name (GST_BIN (pipeline), "autobin");
cache = gst_bin_get_by_name (GST_BIN (autobin), "cache");
new_element = gst_bin_get_by_name (GST_BIN (autobin), "new_element");

gst_element_unlink (filesrc, cache);
gst_element_unlink (cache, new_element);
gst_bin_remove (GST_BIN (autobin), cache);
gst_element_link (filesrc, new_element);

gst_element_set_state (pipeline, GST_STATE_PLAYING);

g_print ("done with cache_empty\n");
}

int
main (int argc, char *argv[])
{
GstElement *filesrc;
GstElement *pipeline;
GstElement *autobin;
GstElement *typefind;
GstElement *cache;

gst_init (&argc, &argv);

if (argc != 2) {
g_print ("usage: %s <filename with audio>\n", argv[0]);
exit (-1);

}

/* create a new pipeline to hold the elements */
pipeline = gst_pipeline_new ("pipeline");
g_assert (pipeline != NULL);

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_assert (filesrc != NULL);
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);
gst_bin_add (GST_BIN (pipeline), filesrc);

autobin = gst_bin_new ("autobin");
cache = gst_element_factory_make ("autoplugcache", "cache");
g_signal_connect (G_OBJECT (cache), "cache_empty",

G_CALLBACK (gst_play_cache_empty), pipeline);

typefind = gst_element_factory_make ("typefind", "typefind");
g_signal_connect (G_OBJECT (typefind), "have_type",

G_CALLBACK (gst_play_have_type), pipeline);
gst_bin_add (GST_BIN (autobin), cache);
gst_bin_add (GST_BIN (autobin), typefind);

74

Chapter 29. Your second application

gst_element_link (cache, typefind);
gst_element_add_ghost_pad (autobin,

gst_element_get_pad (cache, "sink"), "sink");

gst_bin_add (GST_BIN(pipeline), autobin);
gst_element_link (filesrc, autobin);

/* start playing */
gst_element_set_state(GST_ELEMENT (pipeline), GST_STATE_PLAYING);

while (gst_bin_iterate (GST_BIN (pipeline)));

/* stop the pipeline */
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_NULL);

gst_object_unref (GST_OBJECT (pipeline));

exit(0);
}
/* example-end helloworld2.c */

We start by constructing a ’filesrc’ element and an ’autobin’ element that holds the
autoplugcache and the typefind element.

We attach the "cache_empty" signal to gst_play_cache_empty and the "have_type" to
our gst_play_have_type function.

The _have_type function first sets the pipeline to the PAUSED state so that it can
safely modify the pipeline. It then finds the elements it is going to manipulate in the
pipeline with:

filesrc = gst_bin_get_by_name (GST_BIN (pipeline), "disk_source");
autobin = gst_bin_get_by_name (GST_BIN (pipeline), "autobin");
cache = gst_bin_get_by_name (GST_BIN (autobin), "cache");

Now we have a handle to the elements we are going to manipulate in the next step.
We don’t need the typefind element anymore so we remove it from the pipeline:

/* unlink the typefind from the pipeline and remove it */
gst_element_unlink (cache, "src", typefind, "sink");
gst_bin_remove (GST_BIN (autobin), typefind);

Our next step is to construct an element that can play the type we just detected. We
are going to use the autoplugger to create an element that links the type to an osssink.
We add the new element to our autobin.

/* and an audio sink */
osssink = gst_element_factory_make("osssink", "play_audio");
g_assert(osssink != NULL);

autoplug = gst_autoplug_factory_make ("staticrender");
g_assert (autoplug != NULL);

new_element = gst_autoplug_to_renderers (autoplug,
caps,
osssink,
NULL);

if (!new_element) {
g_print ("could not autoplug, no suitable codecs found...\n");
exit (-1);

75

Chapter 29. Your second application

}

gst_element_set_name (new_element, "new_element");

gst_bin_add (GST_BIN (autobin), new_element);

Our next step is to reset the cache so that the buffers used by the typefind element
are fed into the new element we just created. We reset the cache by setting the "reset"
property of the cache element to TRUE.

g_object_set (G_OBJECT (cache), "reset", TRUE, NULL);

gst_element_link (cache, "src", new_element, "sink");

Finally we set the pipeline back to the playing state. At this point the cache will replay
the buffers. We will be notified when the cache is empty by the gst_play_cache_empty
callback function.

The cache empty function simply removes the autoplugcache element from the
pipeline and relinks the filesrc to the autoplugged element.

To compile the helloworld2 example, use:

gcc -Wall ‘pkg-config gstreamer-0.8 --cflags --libs‘ helloworld2.c \
-o helloworld2

You can run the example with (substitute helloworld.mp3 with you favorite audio
file):

./helloworld2 helloworld.mp3

You can also try to use an AVI or MPEG file as its input. Using autoplugging,
GStreamer will automatically figure out how to handle the stream. Remember that
only the audio part will be played because we have only added an osssink to the
pipeline.

./helloworld2 mymovie.mpeg

76

Chapter 30. Dynamic Parameters

Getting Started
The Dynamic Parameters subsystem is contained within the gstcontrol library. You
need to include the header in your application’s source file:

...
#include <gst/gst.h>
#include <gst/control/control.h>
...

Your application should link to the shared library gstcontrol.

The gstcontrol library needs to be initialized when your application is run. This
can be done after the the GStreamer library has been initialized.

...
gst_init(&argc,&argv);
gst_control_init(&argc,&argv);
...

Creating and Attaching Dynamic Parameters
Once you have created your elements you can create and attach dparams to them.
First you need to get the element’s dparams manager. If you know exactly what
kind of element you have, you may be able to get the dparams manager directly.
However if this is not possible, you can get the dparams manager by calling
gst_dpman_get_manager.

Once you have the dparams manager, you must set the mode that the manager will
run in. There is currently only one mode implemented called "synchronous" - this
is used for real-time applications where the dparam value cannot be known ahead
of time (such as a slider in a GUI). The mode is called "synchronous" because the
dparams are polled by the element for changes before each buffer is processed. An-
other yet-to-be-implemented mode is "asynchronous". This is used when parameter
changes are known ahead of time - such as with a timelined editor. The mode is called
"asynchronous" because parameter changes may happen in the middle of a buffer
being processed.

GstElement *sinesrc;
GstDParamManager *dpman;
...
sinesrc = gst_element_factory_make("sinesrc","sine-source");
...
dpman = gst_dpman_get_manager (sinesrc);
gst_dpman_set_mode(dpman, "synchronous");

If you don’t know the names of the required dparams for your element you can call
gst_dpman_list_dparam_specs(dpman) to get a NULL terminated array of param
specs. This array should be freed after use. You can find the name of the required
dparam by calling g_param_spec_get_name on each param spec in the array. In our
example, "volume" will be the name of our required dparam.

Each type of dparam currently has its own new function. This may eventually be
replaced by a factory method for creating new instances. A default dparam instance
can be created with the gst_dparam_new function. Once it is created it can be attached
to a required dparam in the element.

77

Chapter 30. Dynamic Parameters

GstDParam *volume;
...
volume = gst_dparam_new(G_TYPE_DOUBLE);
if (gst_dpman_attach_dparam (dpman, "volume", volume)){

/* the dparam was successfully attached */
...

}

Changing Dynamic Parameter Values
All interaction with dparams to actually set the dparam value is done through sim-
ple GObject properties. There is a property value for each type that dparams sup-
ports - these currently being "value_double", "value_float", "value_int" and
"value_int64". To set the value of a dparam, simply set the property which matches
the type of your dparam instance.

#define ZERO(mem) memset(&mem, 0, sizeof(mem))
...

gdouble set_to_value;
GstDParam *volume;
GValue set_val;
ZERO(set_val);
g_value_init(&set_val, G_TYPE_DOUBLE);
...
g_value_set_double(&set_val, set_to_value);
g_object_set_property(G_OBJECT(volume), "value_double", &set_val);

Or if you create an actual GValue instance:

gdouble set_to_value;
GstDParam *volume;
GValue *set_val;
set_val = g_new0(GValue,1);
g_value_init(set_val, G_TYPE_DOUBLE);
...
g_value_set_double(set_val, set_to_value);
g_object_set_property(G_OBJECT(volume), "value_double", set_val);

Different Types of Dynamic Parameter
There are currently only two implementations of dparams so far. They are both for
real-time use so should be run in the "synchronous" mode.

GstDParam - the base dparam type
All dparam implementations will subclass from this type. It provides a basic
implementation which simply propagates any value changes as soon as it can.
A new instance can be created with the function GstDParam* gst_dparam_new
(GType type). It has the following object properties:

• "value_double" - the property to set and get if it is a double dparam

• "value_float" - the property to set and get if it is a float dparam

• "value_int" - the property to set and get if it is an integer dparam

78

Chapter 30. Dynamic Parameters

• "value_int64" - the property to set and get if it is a 64 bit integer dparam

• "is_log" - readonly boolean which is TRUE if the param should be displayed on
a log scale

• "is_rate" - readonly boolean which is TRUE if the value is a proportion of the
sample rate. For example with a sample rate of 44100, 0.5 would be 22050 Hz and
0.25 would be 11025 Hz.

GstDParamSmooth - smoothing real-time dparam
Some parameter changes can create audible artifacts if they change too rapidly. The
GstDParamSmooth implementation can greatly reduce these artifacts by limiting the
rate at which the value can change. This is currently only supported for double
and float dparams - the other types fall back to the default implementation. A new
instance can be created with the function GstDParam* gst_dpsmooth_new (GType
type). It has the following object properties:

• "update_period" - an int64 value specifying the number nanoseconds between
updates. This will be ignored in "synchronous"mode since the buffer size dictates
the update period.

• "slope_time" - an int64 value specifying the time period to use in the maximum
slope calculation

• "slope_delta_double" - a double specifying the amount a double value can
change in the given slope_time.

• "slope_delta_float" - a float specifying the amount a float value can change in
the given slope_time.

Audible artifacts may not be completely eliminated by using this dparam. The only
way to eliminate artifacts such as "zipper noise" would be for the element to imple-
ment its required dparams using the array method. This would allow dparams to
change parameters at the sample rate which should eliminate any artifacts.

Timelined dparams
A yet-to-be-implemented subclass of GstDParam will add an API which allows the
creation and manipulation of points on a timeline. This subclass will also provide a
dparam implementation which uses linear interpolation between these points to find
the dparam value at any given time. Further subclasses can extend this functionality
to implement more exotic interpolation algorithms such as splines.

79

Chapter 30. Dynamic Parameters

80

Chapter 31. XML in GStreamer

GStreamer uses XML to store and load its pipeline definitions. XML is also used
internally to manage the plugin registry. The plugin registry is a file that contains
the definition of all the plugins GStreamer knows about to have quick access to the
specifics of the plugins.

We will show you how you can save a pipeline to XML and how you can reload that
XML file again for later use.

Turning GstElements into XML
We create a simple pipeline and write it to stdout with gst_xml_write_file (). The
following code constructs an MP3 player pipeline with two threads and then writes
out the XML both to stdout and to a file. Use this program with one argument: the
MP3 file on disk.

/* example-begin xml-mp3.c */
#include <stdlib.h>
#include <gst/gst.h>

gboolean playing;

int
main (int argc, char *argv[])
{
GstElement *filesrc, *osssink, *queue, *queue2, *decode;
GstElement *bin;
GstElement *thread, *thread2;

gst_init (&argc,&argv);

if (argc != 2) {
g_print ("usage: %s <mp3 filename>\n", argv[0]);
exit (-1);

}

/* create a new thread to hold the elements */
thread = gst_element_factory_make ("thread", "thread");
g_assert (thread != NULL);
thread2 = gst_element_factory_make ("thread", "thread2");
g_assert (thread2 != NULL);

/* create a new bin to hold the elements */
bin = gst_bin_new ("bin");
g_assert (bin != NULL);

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_assert (filesrc != NULL);
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

queue = gst_element_factory_make ("queue", "queue");
queue2 = gst_element_factory_make ("queue", "queue2");

/* and an audio sink */
osssink = gst_element_factory_make ("osssink", "play_audio");
g_assert (osssink != NULL);

decode = gst_element_factory_make ("mad", "decode");
g_assert (decode != NULL);

/* add objects to the main bin */
gst_bin_add_many (GST_BIN (bin), filesrc, queue, NULL);

81

Chapter 31. XML in GStreamer

gst_bin_add_many (GST_BIN (thread), decode, queue2, NULL);

gst_bin_add (GST_BIN (thread2), osssink);

gst_element_link_many (filesrc, queue, decode, queue2, osssink, NULL);

gst_bin_add_many (GST_BIN (bin), thread, thread2, NULL);

/* write the bin to stdout */
gst_xml_write_file (GST_ELEMENT (bin), stdout);

/* write the bin to a file */
gst_xml_write_file (GST_ELEMENT (bin), fopen ("xmlTest.gst", "w"));

exit (0);
}
/* example-end xml-mp3.c */

The most important line is:

gst_xml_write_file (GST_ELEMENT (bin), stdout);

gst_xml_write_file () will turn the given element into an xmlDocPtr that is then for-
matted and saved to a file. To save to disk, pass the result of a fopen(2) as the second
argument.

The complete element hierarchy will be saved along with the inter element pad links
and the element parameters. Future GStreamer versions will also allow you to store
the signals in the XML file.

Loading a GstElement from an XML file
Before an XML file can be loaded, you must create a GstXML object. A saved XML file
can then be loaded with the gst_xml_parse_file (xml, filename, rootelement) method.
The root element can optionally left NULL. The following code example loads the
previously created XML file and runs it.

#include <stdlib.h>
#include <gst/gst.h>

int
main(int argc, char *argv[])
{
GstXML *xml;
GstElement *bin;
gboolean ret;

gst_init (&argc, &argv);

xml = gst_xml_new ();

ret = gst_xml_parse_file(xml, "xmlTest.gst", NULL);
g_assert (ret == TRUE);

bin = gst_xml_get_element (xml, "bin");
g_assert (bin != NULL);

gst_element_set_state (bin, GST_STATE_PLAYING);

while (gst_bin_iterate(GST_BIN(bin)));

82

Chapter 31. XML in GStreamer

gst_element_set_state (bin, GST_STATE_NULL);

exit (0);
}

gst_xml_get_element (xml, "name") can be used to get a specific element from the
XML file.
gst_xml_get_topelements (xml) can be used to get a list of all toplevel elements in the
XML file.

In addition to loading a file, you can also load a from a xmlDocPtr and an in mem-
ory buffer using gst_xml_parse_doc and gst_xml_parse_memory respectively. Both
of these methods return a gboolean indicating success or failure of the requested ac-
tion.

Adding custom XML tags into the core XML data
It is possible to add custom XML tags to the core XML created with gst_xml_write.
This feature can be used by an application to add more information to the save plug-
ins. The editor will for example insert the position of the elements on the screen using
the custom XML tags.

It is strongly suggested to save and load the custom XML tags using a namespace.
This will solve the problem of having your XML tags interfere with the core XML
tags.
To insert a hook into the element saving procedure you can link a signal to the GstEle-
ment using the following piece of code:

xmlNsPtr ns;

...
ns = xmlNewNs (NULL, "http://gstreamer.net/gst-test/1.0/", "test");

...
thread = gst_element_factory_make ("thread", "thread");
g_signal_connect (G_OBJECT (thread), "object_saved",

G_CALLBACK (object_saved), g_strdup ("decoder thread"));
...

When the thread is saved, the object_save method will be called. Our example will
insert a comment tag:

static void
object_saved (GstObject *object, xmlNodePtr parent, gpointer data)
{
xmlNodePtr child;

child = xmlNewChild (parent, ns, "comment", NULL);
xmlNewChild (child, ns, "text", (gchar *)data);

}

Adding the custom tag code to the above example you will get an XML file with the
custom tags in it. Here’s an excerpt:

...
<gst:element>

<gst:name>thread</gst:name>
<gst:type>thread</gst:type>
<gst:version>0.1.0</gst:version>

...

83

Chapter 31. XML in GStreamer

</gst:children>
<test:comment>

<test:text>decoder thread</test:text>
</test:comment>

</gst:element>
...

To retrieve the custom XML again, you need to attach a signal to the GstXML object
used to load the XML data. You can then parse your custom XML from the XML tree
whenever an object is loaded.

We can extend our previous example with the following piece of code.

xml = gst_xml_new ();

g_signal_connect (G_OBJECT (xml), "object_loaded",
G_CALLBACK (xml_loaded), xml);

ret = gst_xml_parse_file (xml, "xmlTest.gst", NULL);
g_assert (ret == TRUE);

Whenever a new object has been loaded, the xml_loaded function will be called. This
function looks like:

static void
xml_loaded (GstXML *xml, GstObject *object, xmlNodePtr self, gpointer data)
{
xmlNodePtr children = self->xmlChildrenNode;

while (children) {
if (!strcmp (children->name, "comment")) {

xmlNodePtr nodes = children->xmlChildrenNode;

while (nodes) {
if (!strcmp (nodes->name, "text")) {

gchar *name = g_strdup (xmlNodeGetContent (nodes));
g_print ("object %s loaded with comment ’%s’\n",

gst_object_get_name (object), name);
}
nodes = nodes->next;

}
}
children = children->next;

}
}

As you can see, you’ll get a handle to the GstXML object, the newly loaded GstObject
and the xmlNodePtr that was used to create this object. In the above example we look
for our special tag inside the XML tree that was used to load the object and we print
our comment to the console.

84

Chapter 32. Debugging

GStreamer has an extensive set of debugging tools for plugin developers.

Command line options
Applications using the GStreamer libraries accept the following set of command line
argruments that help in debugging.

• --gst-debug-help Print available debug categories and exit

• --gst-debug-level=LEVEL Sets the default debug level from 0 (no output) to 5
(everything)

• --gst-debug=LIST Comma-separated list of category_name:level
pairs to set specific levels for the individual categories. Example:
GST_AUTOPLUG:5,GST_ELEMENT_*:3

• --gst-debug-no-color Disable color debugging output

• --gst-debug-disable Disable debugging

• --gst-plugin-spew Enable printout of errors while loading GStreamer plugins.

Adding debugging to a plugin
Plugins can define their own categories for the debugging system. Three things need
to happen:

• The debugging variable needs to be defined somewhere. If you only have one
source file, you can Use GST_DEBUG_CATEGORY_STATIC to define a static de-
bug category variable.

If you have multiple source files, you should define the variable using
GST_DEBUG_CATEGORY in the source file where you’re initializing the debug
category. The other source files should use GST_DEBUG_CATEGORY_EXTERN
to declare the debug category variable, possibly by including a common header
that has this statement.

• The debugging category needs to be initialized. This is done through
GST_DEBUG_CATEGORY_INIT. If you’re using a global debugging category for
the complete plugin, you can call this in the plugin’s plugin_init. If the debug
category is only used for one of the elements, you can call it from the element’s
_class_init function.

• You should also define a default category to be used for debugging. This is done
by defining GST_CAT_DEFAULT for the source files where you’re using debug
macros.

Elements can then log debugging information using the set of macros. There are five
levels of debugging information:

1. ERROR for fatal errors (for example, internal errors)

2. WARNING for warnings

3. INFO for normal information

85

Chapter 32. Debugging

4. DEBUG for debug information (for example, device parameters)

5. LOG for regular operation information (for example, chain handlers)

For each of these levels, there are four macros to log debugging information. Taking
the LOG level as an example, there is

• GST_CAT_LOG_OBJECT logs debug information in the given GstCategory and for
the given GstObject

• GST_CAT_LOG logs debug information in the given GstCategory but without a
GstObject (this is useful for libraries, for example)

• GST_LOG_OBJECT logs debug information in the default GST_CAT_DEFAULT
category (as defined somewhere in the source), for the given GstObject

• GST_LOG logs debug information in the default GST_CAT_DEFAULT category,
without a GstObject

86

Chapter 33. Programs

gst-register
gst-register is used to rebuild the database of plugins. It is used after a new plu-
gin has been added to the system. The plugin database can be found, by default, in
/etc/gstreamer/reg.xml.

gst-launch
This is a tool that will construct pipelines based on a command-line syntax.

A simple commandline looks like:

gst-launch filesrc location=hello.mp3 ! mad ! osssink

A more complex pipeline looks like:

gst-launch filesrc location=redpill.vob ! mpegdemux name=demux \
demux.audio_00! { ac3parse ! a52dec ! osssink } \
demux.video_00! { mpeg2dec ! xvideosink }

You can also use the parser in you own code. GStreamer provides a function
gst_parse_launch () that you can use to construct a pipeline. The following program
lets you create an MP3 pipeline using the gst_parse_launch () function:

#include <gst/gst.h>

int
main (int argc, char *argv[])
{
GstElement *pipeline;
GstElement *filesrc;
GError *error = NULL;

gst_init (&argc, &argv);

if (argc != 2) {
g_print ("usage: %s <filename>\n", argv[0]);
return -1;

}

pipeline = gst_parse_launch ("filesrc name=my_filesrc ! mad ! osssink", &error);
if (!pipeline) {

g_print ("Parse error: %s\n", error->message);
exit (1);

}

filesrc = gst_bin_get_by_name (GST_BIN (pipeline), "my_filesrc");
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

gst_element_set_state (pipeline, GST_STATE_PLAYING);

while (gst_bin_iterate (GST_BIN (pipeline)));

gst_element_set_state (pipeline, GST_STATE_NULL);

return 0;

87

Chapter 33. Programs

}

Note how we can retrieve the filesrc element from the constructed bin using the ele-
ment name.

Grammar Reference
The gst-launch syntax is processed by a flex/bison parser. This section is intended to
provide a full specification of the grammar; any deviations from this specification is
considered a bug.

Elements

... mad ...

A bare identifier (a string beginning with a letter and containing only letters, num-
bers, dashes, underscores, percent signs, or colons) will create an element from a
given element factory. In this example, an instance of the "mad" MP3 decoding plu-
gin will be created.

Links

... !sink ...

An exclamation point, optionally having a qualified pad name (an the name of the
pad, optionally preceded by the name of the element) on both sides, will link two
pads. If the source pad is not specified, a source pad from the immediately preceding
element will be automatically chosen. If the sink pad is not specified, a sink pad
from the next element to be constructed will be chosen. An attempt will be made
to find compatible pads. Pad names may be preceded by an element name, as in
my_element_name.sink_pad.

Properties

... location="http://gstreamer.net" ...

The name of a property, optionally qualified with an element name, and a value, sep-
arated by an equals sign, will set a property on an element. If the element is not speci-
fied, the previous element is assumed. Strings can optionally be enclosed in quotation
marks. Characters in strings may be escaped with the backtick (\). If the right-hand
side is all digits, it is considered to be an integer. If it is all digits and a decimal point,
it is a double. If it is "true", "false", "TRUE", or "FALSE" it is considered to be boolean.
Otherwise, it is parsed as a string. The type of the property is determined later on
in the parsing, and the value is converted to the target type. This conversion is not
guaranteed to work, it relies on the g_value_convert routines. No error message will
be displayed on an invalid conversion, due to limitations in the value convert API.

Bins, Threads, and Pipelines

(...)

88

Chapter 33. Programs

A pipeline description between parentheses is placed into a bin. The open paren may
be preceded by a type name, as in jackbin.(...) to make a bin of a specified type.
Square brackets make pipelines, and curly braces make threads. The default toplevel
bin type is a pipeline, although putting the whole description within parentheses or
braces can override this default.

gst-inspect
This is a tool to query a plugin or an element about its properties.

To query the information about the element mad, you would specify:

gst-inspect mad

Below is the output of a query for the osssink element:

Factory Details:
Long name: Audio Sink (OSS)
Class: Sink/Audio
Description: Output to a sound card via OSS
Version: 0.3.3.1
Author(s): Erik Walthinsen <omega@cse.ogi.edu>, Wim Taymans <wim.taymans@chello.be>
Copyright: (C) 1999

GObject
+----GstObject

+----GstElement
+----GstOssSink

Pad Templates:
SINK template: ’sink’

Availability: Always
Capabilities:

’osssink_sink’:
MIME type: ’audio/raw’:
format: String: int
endianness: Integer: 1234
width: List:

Integer: 8
Integer: 16

depth: List:
Integer: 8
Integer: 16

channels: Integer range: 1 - 2
law: Integer: 0
signed: List:

Boolean: FALSE
Boolean: TRUE

rate: Integer range: 1000 - 48000

Element Flags:
GST_ELEMENT_THREADSUGGESTED

Element Implementation:
No loopfunc(), must be chain-based or not configured yet
Has change_state() function: gst_osssink_change_state
Has custom save_thyself() function: gst_element_save_thyself
Has custom restore_thyself() function: gst_element_restore_thyself

Clocking Interaction:

89

Chapter 33. Programs

element requires a clock
element provides a clock: GstOssClock

Pads:
SINK: ’sink’

Implementation:
Has chainfunc(): 0x40056fc0

Pad Template: ’sink’

Element Arguments:
name : String (Default "element")
device : String (Default "/dev/dsp")
mute : Boolean (Default false)
format : Integer (Default 16)
channels : Enum "GstAudiosinkChannels" (default 1)

(0): Silence
(1): Mono
(2): Stereo

frequency : Integer (Default 11025)
fragment : Integer (Default 6)
buffer-size : Integer (Default 4096)

Element Signals:
"handoff" : void user_function (GstOssSink* object,

gpointer user_data);

To query the information about a plugin, you would do:

gst-inspect gstelements

90

Chapter 34. Components

FIXME: This chapter is way out of date.

GStreamer includes components that people can include in their programs.

GstPlay
GstPlay is a GtkWidget with a simple API to play, pause and stop a media file.

GstMediaPlay
GstMediaPlay is a complete player widget.

GstEditor
GstEditor is a set of widgets to display a graphical representation of a pipeline.

91

Chapter 34. Components

92

Chapter 35. GNOME integration

GStreamer is fairly easy to integrate with GNOME applications. GStreamer uses
libxml 2.0, GLib 2.0 and popt, as do all other GNOME applications. There are how-
ever some basic issues you need to address in your GNOME applications.

Command line options
GNOME applications call gnome_program_init () to parse command-line options
and initialize the necessary gnome modules. GStreamer applications normally call
gst_init (&argc, &argv) to do the same for GStreamer.
Each of these two swallows the program options passed to the program, so we need
a different way to allow both GNOME and GStreamer to parse the command-line
options. This is shown in the following example.

/* example-begin gnome.c */
#include <gnome.h>
#include <gst/gst.h>

int
main (int argc, char **argv)
{
GstPoptOption options[] = {

{ NULL, ’\0’, POPT_ARG_INCLUDE_TABLE, NULL, 0, "GStreamer", NULL },
POPT_TABLEEND

};
GnomeProgram *program;
poptContext context;
const gchar **argvn;

GstElement *pipeline;
GstElement *src, *sink;

options[0].arg = (void *) gst_init_get_popt_table ();
g_print ("Calling gnome_program_init with the GStreamer popt table\n");
/* gnome_program_init will initialize GStreamer now
* as a side effect of having the GStreamer popt table passed. */

if (! (program = gnome_program_init ("my_package", "0.1", LIBGNOMEUI_MODULE,
argc, argv,
GNOME_PARAM_POPT_TABLE, options,
NULL)))

g_error ("gnome_program_init failed");

g_print ("Getting gnome-program popt context\n");
g_object_get (program, "popt-context", &context, NULL);
argvn = poptGetArgs (context);
if (!argvn) {

g_print ("Run this example with some arguments to see how it works.\n");
return 0;

}

g_print ("Printing rest of arguments\n");
while (*argvn) {

g_print ("argument: %s\n", *argvn);
++argvn;

}

/* do some GStreamer things to show everything’s initialized properly */
g_print ("Doing some GStreamer stuff to show that everything works\n");
pipeline = gst_pipeline_new ("pipeline");
src = gst_element_factory_make ("fakesrc", "src");
sink = gst_element_factory_make ("fakesink", "sink");
gst_bin_add_many (GST_BIN (pipeline), src, sink, NULL);

93

Chapter 35. GNOME integration

gst_element_link (src, sink);
gst_element_set_state (pipeline, GST_STATE_PLAYING);
gst_bin_iterate (GST_BIN (pipeline));
gst_element_set_state (pipeline, GST_STATE_NULL);

return 0;
}
/* example-end gnome.c */

If you try out this program, you will see that when called with --help, it will print
out both GStreamer and GNOME help arguments. All of the arguments that didn’t
belong to either end up in the argvn pointer array.
FIXME: flesh this out more. How do we get the GStreamer arguments at the end ?
FIXME: add a GConf bit.

94

Chapter 36. Quotes from the Developers

As well as being a cool piece of software, GStreamer is a lively project, with devel-
opers from around the globe very actively contributing. We often hang out on the
#gstreamer IRC channel on irc.freenode.org: the following are a selection of amus-
ing1 quotes from our conversations.

23 Nov 2003

Uraeus: ah yes, the sleeping part, my mind is not multitasking so I was still think-
ing about exercise

dolphy: Uraeus: your mind is multitasking

dolphy: Uraeus: you just miss low latency patches

14 Sep 2002

--- wingo-party is now known as wingo
* wingo holds head

16 Feb 2001

wtay: I shipped a few commerical products to >40000 people now but GStreamer
is way more exciting...

16 Feb 2001

* tool-man is a gstreamer groupie

14 Jan 2001
Omega: did you run ldconfig? maybe it talks to init?

wtay: not sure, don’t think so... I did run gstreamer-register though :-)

Omega: ah, that did it then ;-)

wtay: right

Omega: probably not, but in case GStreamer starts turning into an OS, someone
please let me know?

9 Jan 2001

wtay: me tar, you rpm?

wtay: hehe, forgot "zan"

Omega: ?

wtay: me tar"zan", you ...

7 Jan 2001

Omega: that means probably building an agreggating, cache-massaging queue to
shove N buffers across all at once, forcing cache transfer.

wtay: never done that before...

Omega: nope, but it’s easy to do in gstreamer <g>

wtay: sure, I need to rewrite cp with gstreamer too, someday :-)

95

Chapter 36. Quotes from the Developers

7 Jan 2001

wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001
wtay: we need to cut down the time to create an mp3 player down to seconds...

richardb: :)

Omega: I’m wanting to something more interesting soon, I did the "draw an mp3
player in 15sec" back in October ’99.

wtay: by the time Omega gets his hands on the editor, you’ll see a complete audio
mixer in the editor :-)
richardb: Well, it clearly has the potential...

Omega: Working on it... ;-)

28 Dec 2000

MPAA: We will sue you now, you have violated our IP rights!

wtay: hehehe

MPAA: How dare you laugh at us? We have lawyers! We have Congressmen! We
have LARS!

wtay: I’m so sorry your honor

MPAA: Hrumph.

* wtay bows before thy

4 Jun 2001

taaz: you witchdoctors and your voodoo mpeg2 black magic...

omega_: um. I count three, no four different cults there <g>
ajmitch: hehe

omega_: witchdoctors, voodoo, black magic,

omega_: and mpeg

Notes
1. No guarantee of sense of humour compatibility is given.

96

	GStreamer Application Development Manual (0.8.3)
	Table of Contents
	Chapter 1. Introduction
	What is GStreamer?

	Chapter 2. Motivation
	Current problems
	Multitude of duplicate code
	'One goal' media players/libraries
	Non unified plugin mechanisms
	Provision for network transparency
	Catch up with the Windows world

	Chapter 3. Goals
	The design goals
	Clean and powerful
	Object oriented
	Extensible
	Allow binary only plugins
	High performance
	Clean core/plugins separation
	Provide a framework for codec experimentation

	Chapter 4. Elements
	What is an element ?
	Types of elements
	Source elements
	Filters and codecs
	Sink elements

	Chapter 5. Pads
	Types of pads
	Dynamic pads
	Request pads

	Capabilities of a pad
	Capabilities
	What are properties ?
	What capabilities are used for

	Chapter 6. Plugins
	Chapter 7. Linking elements
	Chapter 8. Bins
	Chapter 9. Buffers
	Chapter 10. Element states
	The different element states
	The NULL state
	The READY state
	The PAUSED state
	The PLAYING state

	Chapter 11. Initializing GStreamer
	The popt interface

	Chapter 12. Elements
	Creating a GstElement
	GstElement properties
	GstElement signals
	More about GstElementFactory
	Getting information about an element using the factory details
	Finding out what pads an element can contain
	Different ways of querying the factories

	Chapter 13. Pads
	Types of pads
	Dynamic pads
	Request pads

	Capabilities of a pad
	Capabilities
	Getting the capabilities of a pad
	Creating capability structures

	Chapter 14. Plugins
	Chapter 15. Linking elements
	Making simple links
	Making filtered links

	Chapter 16. Bins
	Creating a bin
	Adding elements to a bin
	Custom bins
	Ghost pads

	Chapter 17. Buffers
	Chapter 18. Element states
	Changing element state

	Chapter 19. Your first application
	Hello world
	Compiling helloworld.c
	Conclusion

	Chapter 20. More on factories
	The problems with the helloworld example
	More on MIME Types
	GStreamer types
	MIME type to id conversion
	id to GstType conversion
	extension to id conversion

	Creating elements with the factory
	GStreamer basic types

	Chapter 21. Threads
	Constraints placed on the pipeline by the GstThread
	When would you want to use a thread?

	Chapter 22. Queues
	Chapter 23. Cothreads
	Chainbased elements
	Loopbased elements

	Chapter 24. Understanding schedulers
	Chapter 25. Clocks in GStreamer
	Chapter 26. Dynamic pipelines
	Chapter 27. Type Detection
	Chapter 28. Autoplugging
	Using autoplugging
	Using the GstAutoplugCache element
	Another approach to autoplugging
	The spider element
	Spider features

	Chapter 29. Your second application
	Autoplugging helloworld

	Chapter 30. Dynamic Parameters
	Getting Started
	Creating and Attaching Dynamic Parameters
	Changing Dynamic Parameter Values
	Different Types of Dynamic Parameter
	GstDParam the base dparam type
	GstDParamSmooth smoothing realtime dparam
	Timelined dparams

	Chapter 31. XML in GStreamer
	Turning GstElements into XML
	Loading a GstElement from an XML file
	Adding custom XML tags into the core XML data

	Chapter 32. Debugging
	Command line options
	Adding debugging to a plugin

	Chapter 33. Programs
	gstregister
	gstlaunch
	Grammar Reference
	Elements
	Links
	Properties
	Bins, Threads, and Pipelines

	gstinspect

	Chapter 34. Components
	GstPlay
	GstMediaPlay
	GstEditor

	Chapter 35. GNOME integration
	Command line options

	Chapter 36. Quotes from the Developers

