Greaner Plugin Writer's Guide (0.8.7.3)

Richard John Boulton
Erik Walthinsen
Steve Baker
Leif Johnson
Ronald S. Bultje

@rearer Plugin Writer’'s Guide (0.8.7.3)
by Richard John Boulton, Erik Walthinsen, Steve Baker, Leif Johnson, and Ronald S. Bultje

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Table of Contents

L. Introduction 1
1o PTEface. ... 1
Who Should Read This Guide?...........ccccoouviiiiiiiiiiiicen 1
Preliminary Readingcccoooreiiiiiioiiccccc 1
Structure of This Guide.......ccocoviviiiiiiiii e, 1

2. BasiC COMNCEPLS ..ottt 5
Elements and PIUZINS.........cccc.oooiuiiiiiiiiic e 5
Pads.....oooviiiiiee e 5
Data, Buffers and EVENtSccoooiioiiiiicieeeecee ettt 6
Mimetypes and Properties ..o, 7

IL. Building a Plugin 11
3. Constructing the Boilerplate.........cccoooreiiiiiiiiiii 11
Getting the GStreamer Plugin Templates.........c.cccooveiiiiiiiiiiiiiic 11

I FIXME !!! Using the Project Stamp........cccocoeveueiivvnininiinccccececenen, 11
Examining the Basic Code........ccoiuiiiiiiic e, 12
GstElementDetailsccoooviiiiiiiciiiiic 13
GstStaticPadTemplatec.ccooviiiiiiiiiccceeeeeeee e 13
Constructor FUNCHONS.ccovuiiiiiiiiicciice 14

The plugin_init fUNCHONcoouviiiiiiiccccc e 15

4. Specifying the pads ... 17
The link function..........cccevi e 17

The getcaps fUNCHONcooviiiiiriicc e 18
EXPLCIt CAPS..coviniiiiiiiiiicccc e 19

5. The chain fuNCHON.........ccciiiiiiii s 21
6. What are states?ccovvieieiiiiiiiic e 23
Managing filter Stateccooviiiiiiiiir e 23

7. Adding Arguments..........cocueiiiiiieiieicc e 25
8. SIGNALS .. 29
9. Building a Test APPLCAtIONc.coouvuiiiiiiiieecrrcceccceeeeeeaes 31
10. Creating a Filter with a Filter Factoryccccoooioiii 33
III. Advanced Filter Concepts 35
11. How scheduling WOTKSccoouviiiiiiiiiiiiiicccccccee s 35
The Basic Scheduler.............cccooviiiiiiiiiie 35

The Optimal Scheduler ... 35

12. How @ 100pfunc WOrKS ... 37
Multi-Input Elements...........c.oooeuiiiiiiiiiiicccc e 37

The Bytestream ODJectccovviiiiiiiiiiiincccceeeeeeeescceees 39
Adding a second oUtPULc.couiiiiiiii e, 41
Modifying the test application.........cccooeurieiiiiiiiiiiciiccc, 41

13. Types and Properties..........ccovvviiiciceicininsiicccieeieieeeeeeese e eneaes 43
Building a Simple Format for Testing............ccocovomeiniiiiiiiiccc 43
Typefind Functions and Autoplugging..........cccceeeeeieiiciiiiciciieieeccin 43

List of Defined TYPes.......cccuvurriiiiiciceeierreececeeee e 44

14. Request and Sometimes pads........c.cocueveiiiurieiiiicieiicc e 55
Sometimes Padscceuiriiiiii e 55
ReQUESE PAAS ...ttt 57

15, CLOCKING ..ottt 59
TyPes Of tMEcuvei s 59
CIOCKS vt 59
Flow of data between elements and time..........ccccccoveiviniiiiiiinnnn, 59
Obligations of each element.............ccooooiiiii, 59

16. Supporting Dynamic Parameters............cccocovueiiiinniniiciicecce, 61
Comparing Dynamic Parameters with GObject Properties 61
Getting Started ... 61
Defining Parameter Specificationsc.ccccveiecieiceiinnninccccciceeene 62

The Data Processing LOOPcoceuirieiiriciiiiieiececcc e 65

17. MIDI ..o 67

v

L8, INEOTTACES. ...ttt et ettt s e e s eae s esaa e e e atessaeesntaeesnaeeenns 69

How to Implement INterfacescoccveeveeieieieiinnrccccceeeeeeeenes 69
Mixer INterfacecoovviiviiiiiicc e 70
Tuner INterface ..o 72
Color Balance Interface...........cocevieereiieiniiciiiccece e, 74
Property Probe Interface.........c..cocooeieiiiiiiiiinnicccccccceeseeeaes 75

X Overlay Interface.........ooevieiiiiiiiiii e 77
Navigation Interface..........cccccvviriiiiiiinicceeceeecree e 78

19. Tagging (Metadata and Streaminfo)cccccocuieueinirnnninincccccceceeaee 81
Reading Tags from Streams.............cccooeioeuiieiiciiiicieicc e 81
Writing Tags to Streams...........ccooeiviniiniiiiiic 83

20. Events: Seeking, Navigation and MoTe...........ccccccoeviiiiinnnnnncniccccnnens 87
Downstream @VeNtS..........oovveuiiiiiiiieieiccceecec s 87
Upstream eVeNtsccocuiiioiiiiiiii 88

Al Events TOZEther ..o 88

IV. Other Element Types 93
21. WIItINg @ SOULCEovviiiiiiicicic e 93
The get()-function ... 93
Events, querying and converting ..o 93
Time, clocking and synchronization ... 96
Using special MemMOTYcc.ovoriiiiiieiiiiecccc e 98

22. WIIHING @ SINK ..ottt e 101
Data processing, events, synchronization and clocksccccceevvunuceee. 101
Special MEMOTYoiiiiieiicic s 102

23. Writing a 1-to-N Element, Demuxer or Parser.............ccccovieieioicieeicienenne, 105
Demuxer Caps Negotiation..........cccceeeivininiiiiiiiiiiccccecne 105

Data processing and downstream eventscccocoeueveicieiiicicicicciceene 105
Parsing versus interpretingcocooeoeiieieieieiiiiiiiieci 105
Simple seeking and INAEXESccceiimiueiiuiiininininiiccceceeeeecceeenes 106

24. Writing a N-to-1 Element or MUXET.........ccccoviiiiiciiiiiieeiccccc e 107
The Data Loop FUNCHONooiiiiii s 107
Events in the Loop FUNCHON ... 107
NegOtAtION ...ttt 107
Markup vs. data processingcccoeeiorueieiiieieiieeiecec s 109

25. Writing a N-to-N elementcccoooiiiiiiiininiiiceccceeenneccccenes 111
26. Writing an AUtOpIUZZercuoviruriieiciecie e 113
27. Writing @ Managercccceveieieieiiiiieiiicicie s 115
V. Appendices 117
28. Things to check when writing an element............ccccooiiiiii, 117
ADOUL StAtES ...t 117
DEDUGEING ...t 117
Querying, events and the liKeccocooiii 117
Testing your element...........ccoeviiiiiiininicceccceeee e 118

Chapter 1. Preface

Who Should Read This Guide?

This guide explains how to write new modules for G&reaner . The guide is relevant
to several groups of people:

» Anyone who wants to add support for new ways of processing data in G& r eaner
For example, a person in this group might want to create a new data format con-
verter, a new visualization tool, or a new decoder or encoder.

+ Anyone who wants to add support for new input and output devices. For example,
people in this group might want to add the ability to write to a new video output
system or read data from a digital camera or special microphone.

» Anyone who wants to extend G&reaner in any way. You need to have an un-
derstanding of how the plugin system works before you can understand the con-
straints that the plugin system places on the rest of the code. Also, you might be
surprised after reading this at how much can be done with plugins.

This guide is not relevant to you if you only want to use the existing functionality
of GRreaner , or if you just want to use an application that uses G&reaner . If you
are only interested in using existing plugins to write a new application - and there
are quite a lot of plugins already - you might want to check the GStreamer Application
Development Manual. If you are just trying to get help with a GBreaner application,
then you should check with the user manual for that particular application.

Preliminary Reading

This guide assumes that you are somewhat familiar with the basic workings of
Greaner . For a gentle introduction to programming concepts in GRreamner , you
may wish to read the GStreamer Application Development Manual first. Also check out
the documentation available on the GRreaner ~ web site’.

Since G&reaner adheres to the GObject programming model, this guide also as-
sumes that you understand the basics of GObject’ programming. There are several
good introductions to the GObject library, including the GTK+ Tutorial’ and the Glib
Object system®.

Structure of This Guide

To help you navigate through this guide, it is divided into several large parts. Each
part addresses a particular broad topic concerning G&reaner plugin development.
The parts of this guide are laid out in the following order:

+ Building a Plugin - Introduction to the structure of a plugin, using an example au-
dio filter for illustration.

This part covers all the basic steps you generally need to perform to build a plugin,
such as registering the element with G&reaner and setting up the basics so it can
receive data from and send data to neighbour elements. The discussion begins by
giving examples of generating the basic structures and registering an element in
Constructing the Boilerplate. Then, you will learn how to write the code to get a
basic filter plugin working in Chapter 4, Chapter 5 and Chapter 6.

After that, we will show some of the GObject concepts on how to make an ele-
ment configurable for applications and how to do application-element interaction

Chapter 1. Preface

in Adding Arguments and Chapter 8. Next, you will learn to build a quick test ap-
plication to test all that you've just learned in Chapter 9. We will just touch upon
basics here. For full-blown application development, you should look at the Ap-
plication Development Manual’.

¢+ Advanced Filter Concepts - Information on advanced features of GBreaner plu-
gin development.

After learning about the basic steps, you should be able to create a functional audio
or video filter plugin with some nice features. However, G&reaner offers more for
plugin writers. This part of the guide includes chapters on more advanced topics,
such as scheduling, media type definitions in Gireaner , clocks, interfaces and
tagging. Since these features are purpose-specific, you can read them in any order,
most of them don’t require knowledge from other sections.

The first chapter, named Chapter 11, will explain some of the basics of element
scheduling. It is not very in-depth, but is mostly some sort of an introduction
on why other things work as they do. Read this chapter if you're interested in
Greaner internals. Next, we will apply this knowledge and discuss another type
of data transmission than what you learned in Chapter 5: Chapter 12. Loop-based
elements will give you more control over input rate. This is useful when writing,
for example, muxers or demuxers.

Next, we will discuss media identification in GBreaner in Chapter 13. You will
learn how to define new media types and get to know a list of standard media
types defined in G& reaner

In the next chapter, you will learn the concept of request- and sometimes-pads,
which are pads that are created dynamically, either because the application asked
for it (request) or because the media stream requires it (sometimes). This will be in
Chapter 14.

The next chapter, Chapter 15, will explain the concept of clocks in Gireamer . You
need this information when you want to know how elements should achieve au-
dio/video synchronization.

The next few chapters will discuss advanced ways of doing application-element
interaction. Previously, we learned on the GObject-ways of doing this in
Adding Arguments and Chapter 8. We will discuss dynamic parameters, which
are a way of defining element behaviour over time in advance, in Chapter 16.
Next, you will learn about interfaces in Chapter 18. Interfaces are very target-
specific ways of application-element interaction, based on GObject’s Glnterface.
Lastly, you will learn about how metadata is handled in Gireaner in Chapter 19.

The last chapter, Chapter 20, will discuss the concept of events in G&reaner
Events are, on the one hand, another way of doing application-element
interaction. It atkes care of seeking, for example. On the other hand, it is also a
way in which elements interact with each other, such as letting each other know
about media stream discontinuities, forwarding tags inside a pipeline and so on.

¢ Other Element Types - Explanation of writing other plugin types.

Because the first two parts of the guide use an audio filter as an example, the
concepts introduced apply to filter plugins. But many of the concepts apply
equally to other plugin types, including sources, sinks, and autopluggers.
This part of the guide presents the issues that arise when working on
these more specialized plugin types. The part includes chapters on
Writing a Source, Writing a Sink, Writing a 1-to-N Element, Demuxer or Parser,
Writing a N-to-1 Element or Muxer and Writing a Manager.

» Appendices - Further information for plugin developers.

Chapter 1. Preface

The appendices contain some information that stubbornly refuses to fit cleanly in
other sections of the guide. Most of this section is not yet finished.

The remainder of this introductory part of the guide presents a short overview of the
basic concepts involved in GBreaner plugin development. Topics covered include
Elements and Plugins, Pads, Data, Buffers and Events and Types and Properties. If
you are already familiar with this information, you can use this short overview to
refresh your memory, or you can skip to Building a Plugin.

As you can see, there a lot to learn, so let’s get started!

» Creating compound and complex elements by extending from a GstBin. This will
allow you to create plugins that have other plugins embedded in them.

» Adding new mime-types to the registry along with typedetect functions. This will
allow your plugin to operate on a completely new media type.

Notes

http:/ / gstreamer.freedesktop.org/documentation/

http:/ /developer.gnome.org/doc/AP1/2.0/gobject/index.html
http:/ /www.gtk.org/tutorial /

http:/ /www.le-hacker.org/papers/gobject/index.html

AR A

http:/ / gstreamer.freedesktop.org/data/doc/gstreamer/head /manual /html/index.html

Chapter 1. Preface

Chapter 2. Basic Concepts

This chapter of the guide introduces the basic concepts of Greaner . Understand-
ing these concepts will help you grok the issues involved in extending G& r eaner
Many of these concepts are explained in greater detail in the GStreamer Application
Development Manual; the basic concepts presented here serve mainly to refresh your
memory.

Elements and Plugins

Pads

Elements are at the core of Rreaner . In the context of plugin development, an ele-
ment is an object derived from the GtHenent 'class. Elements provide some sort of
functionality when linked with other elements: For example, a source element pro-
vides data to a stream, and a filter element acts on the data in a stream. Without
elements, GRreaner is just a bunch of conceptual pipe fittings with nothing to link.
A large number of elements ship with G&reaner , but extra elements can also be
written.

Just writing a new element is not entirely enough, however: You will need to encap-
sulate your element in a plugin to enable G&reaner to use it. A plugin is essentially
a loadable block of code, usually called a shared object file or a dynamically linked
library. A single plugin may contain the implementation of several elements, or just
a single one. For simplicity, this guide concentrates primarily on plugins containing
one element.

A filter is an important type of element that processes a stream of data. Producers
and consumers of data are called source and sink elements, respectively. Bin elements
contain other elements. One type of bin is responsible for scheduling the elements
that they contain so that data flows smoothly. Another type of bin, called autoplugger
elements, automatically add other elements to the bin and links them together so that
they act as a filter between two arbitary stream types.

The plugin mechanism is used everywhere in Gireaner , even if only the standard
packages are being used. A few very basic functions reside in the core library, and all
others are implemented in plugins. A plugin registry is used to store the details of
the plugins in an XML file. This way, a program using G&reaner does not have to
load all plugins to determine which are needed. Plugins are only loaded when their
provided elements are requested.

See the GStreamer Library Reference for the current implementation details of
GtHement Zand GtHugin 3.

Pads are used to negotiate links and data flow between elements in GRreaner . A pad
can be viewed as a “place” or “port” on an element where links may be made with
other elements, and through which data can flow to or from those elements. Pads
have specific data handling capabilities: A pad can restrict the type of data that flows
through it. Links are only allowed between two pads when the allowed data types of
the two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug or jack on a physical
device. Consider, for example, a home theater system consisting of an amplifier, a
DVD player, and a (silent) video projector. Linking the DVD player to the amplifier is
allowed because both devices have audio jacks, and linking the projector to the DVD
player is allowed because both devices have compatible video jacks. Links between
the projector and the amplifier may not be made because the projector and amplifier
have different types of jacks. Pads in GRreaner serve the same purpose as the jacks
in the home theater system.

Chapter 2. Basic Concepts

For the most part, all data in G&reaner ~ flows one way through a link between ele-
ments. Data flows out of one element through one or more source pads, and elements
accept incoming data through one or more sink pads. Source and sink elements have
only source and sink pads, respectively.

See the GStreamer Library Reference for the current implementation details of a
GtPad *

Data, Buffers and Events

All streams of data in GRreaner are chopped up into chunks that are passed from
a source pad on one element to a sink pad on another element. Data are structures
used to hold these chunks of data.

Data contains the following important types:

» An exact type indicating what type of data (control, content, ...) this Data is.

* A reference count indicating the number of elements currently holding a reference
to the buffer. When the buffer reference count falls to zero, the buffer will be un-
linked, and its memory will be freed in some sense (see below for more details).

There are two types of data defined: events (control) and buffers (content).

Buffers may contain any sort of data that the two linked pads know how to handle.
Normally, a buffer contains a chunk of some sort of audio or video data that flows
from one element to another.

Buffers also contain metadata describing the buffer’s contents. Some of the important
types of metadata are:

+ A pointer to the buffer’s data.
» An integer indicating the size of the buffer’s data.

* A timestamp indicating the preferred display timestamp of the content in the
buffer.

Events contain information on the state of the stream flowing between the two linked
pads. Events will only be sent if the element explicitely supports them, else the core
will (try to) handle the events automatically. Events are used to indicate, for example,
a clock discontinuity, the end of a media stream or that the cache should be flushed.

Events may contain several of the following items:

» A subtype indicating the type of the contained event.

« The other contents of the event depend on the specific event type.

Events will be discussed extensively in Chapter 20. Until then, the only event that
will be used is the EOS event, which is used to indicate the end-of-stream (usually
end-of-file).

See the GStreamer Library Reference for the current implementation details of a
Gthta °, GtBffer °®and GtBent 7.

Chapter 2. Basic Concepts

Buffer Allocation

Buffers are able to store chunks of memory of several different types. The most
generic type of buffer contains memory allocated by malloc(). Such buffers, although
convenient, are not always very fast, since data often needs to be specifically copied
into the buffer.

Many specialized elements create buffers that point to special memory. For example,
the filesrc element usually maps a file into the address space of the application (using
mmap()), and creates buffers that point into that address range. These buffers created
by filesrc act exactly like generic buffers, except that they are read-only. The buffer
freeing code automatically determines the correct method of freeing the underlying
memory. Downstream elements that recieve these kinds of buffers do not need to do
anything special to handle or unreference it.

Another way an element might get specialized buffers is to request them from a
downstream peer. These are called downstream-allocated buffers. Elements can ask
a peer connected to a source pad to create an empty buffer of a given size. If a down-
stream element is able to create a special buffer of the correct size, it will do so. Other-
wise GBreaner will automatically create a generic buffer instead. The element that
requested the buffer can then copy data into the buffer, and push the buffer to the
source pad it was allocated from.

Many sink elements have accelerated methods for copying data to hardware, or
have direct access to hardware. It is common for these elements to be able to create
downstream-allocated buffers for their upstream peers. One such example is xima-
gesink. It creates buffers that contain XImages. Thus, when an upstream peer copies
data into the bulffer, it is copying directly into the XImage, enabling ximagesink to
draw the image directly to the screen instead of having to copy data into an XImage
first.

Filter elements often have the opportunity to either work on a buffer in-place, or work
while copying from a source buffer to a destination buffer. It is optimal to implement
both algorithms, since the G reaner framework can choose the fastest algorithm as
appropriate. Naturally, this only makes sense for strict filters -- elements that have
exactly the same format on source and sink pads.

Mimetypes and Properties

Ereaner uses a type system to ensure that the data passed between elements is
in a recognized format. The type system is also important for ensuring that the pa-
rameters required to fully specify a format match up correctly when linking pads
between elements. Each link that is made between elements has a specified type and
optionally a set of properties.

The Basic Types

@Ereaner already supports many basic media types. Following is a table of a few
of the the basic types used for buffers in Gireaner . The table contains the name
("mime type") and a description of the type, the properties associated with the
type, and the meaning of each property. A full list of supported types is included in
List of Defined Types.

Table 2-1. Table of Basic Types

Mime Type |Description | Property Property Property Property
Type Values Description

Chapter 2. Basic Concepts

Mime Type

Description

Property

Property
Type

Property
Values

Property
Description

audio/*

All audio
types

rate

integer

greater than
0

The sample
rate of the
data, in
samples
(per
channel) per
second.

channels

integer

greater than
0

The
number of
channels of
audio data.

audio/x-
raw-int

Unstruc-
tured and
uncom-
pressed raw
integer
audio data.

endianness

integer

G_BIG_ENDI
(1234) or
G_LITTLE_E
(4321)

AT¥e order
of bytes in a
NBXivplé. The
value
G_LITTLE_E
(4321)
means
“little-
endian”
(byte-order
is “least
significant
byte first”).
The value
G_BIG_END]
(1234)
means “big-
endian”
(byte order
is “most
significant
byte first”).

NDIAN

AN

signed

boolean

TRUE or
FALSE

Whether
the values of
the integer
samples are
signed or
not. Signed
samples use
one bit to
indicate
sign
(negative or
positive) of
the value.
Unsigned
samples are
always
positive.

width

integer

greater than
0

Number of
bits
allocated

per sample.

Chapter 2. Basic Concepts

Mime Type

Description

Property

depth

Property
Type

integer

Property
Values

greater than
0

Property
Description

The
number of
bits used
per sample.
This must
be less than
or equal to
the width: If
the depth is
less than the
width, the
low bits are
assumed to
be the ones
used. For
example, a
width of 32
and a depth
of 24 means
that each
sample is
stored in a
32 bit word,
but only the
low 24 bits
are actually
used.

audio/mpeg

Audio data
compressed
using the
MPEG
audio
encoding
scheme.

mpegversion

integer

1,20r4

The MPEG-
version
used for
encoding
the data.
The value 1
refers to
MPEG-1, -2
and -2.5
layer 1,2 or
3. The
values 2 and
4 refer to the
MPEG-AAC
audio
encoding
schemes.

Chapter 2. Basic Concepts

Notes

10

Mime Type

Description

Property

framed

Property
Type

boolean

Property
Values

Oor1

Property
Description

A true
value
indicates
that each
buffer
contains
exactly one
frame. A
false value
indicates
that frames
and buffers
do not
necessarily
match up.

layer

integer

1,2,0or3

The
compression
scheme
layer used
to compress
the data
(only if
mpeguver-
sion=1).

bitrate

integer

greater than
0

The bitrate,
in bits per
second. For
VBR
(variable
bitrate)
MPEG data,
this is the
average
bitrate.

audio/x-
vorbis

Vorbis
audio data

There are
currently no
specific
properties
defined for
this type.

N O U o WO N -

../ gstreamer /html/GstElement.html

../ gstreamer /html/GstElement.html

../ gstreamer /html/gstreamer-GstPlugin.html
../ gstreamer /html/GstPad.html

../ gstreamer /html/gstreamer-GstData.html
../ gstreamer /html/gstreamer-GstBuffer.html
../ gstreamer /html/gstreamer-GstEvent.html

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimum code for a new
plugin. Starting from ground zero, you will see how to get the GRreaner template
source. Then you will learn how to use a few basic tools to copy and modify a tem-
plate plugin to create a new plugin. If you follow the examples here, then by the end
of this chapter you will have a functional audio filter plugin that you can compile
and use in GBreaner applications.

Getting the GStreamer Plugin Templates

There are currently two ways to develop a new plugin for GRreaner : You can write
the entire plugin by hand, or you can copy an existing plugin template and write the
plugin code you need. The second method is by far the simpler of the two, so the first
method will not even be described here. (Errm, that is, “it is left as an exercise to the
reader.”)

The first step is to check out a copy of the gst-tenplate ~ CVS module to get an
important tool and the source code template for a basic G&reaner plugin. To check
out the gst-tenplate module, make sure you are connected to the internet, and type
the following commands at a command console:

shell $ cvs -d: pserver: anoncvs@vs. freedeskt op. or o/cvs/ gstrea ner co |login
Logging in to :pserver:anoncvs@vs. freedesktop. org:/cv s/gstr eaner

QS password: [ENTER

shell $ cvs -z3 -d: pserver:anoncvs@vs. f reedeskt op. org: /cvs/g stream er co gst-tenplate
gst -t enpl at e/ README

gst-tenpl at e/ gst - app/ AJTHIRS

gst -t enpl at e/ gst - app/ Changel.og

gst -t enpl at e/ gst - app/ Mikefi | e. am

gst -t enpl at e/ gst - app/ NV

gst -t enpl at e/ gst - app/ README

gst -t enpl at e/ gst - app/ aut ogen. sh

gst -tenpl at e/ gst - app/ confi gure. ac

gst-tenpl at e/ gst - app/ src/ Mkefil e.am

ccccccccc

After the first command, you will have to press ENTER to log in to the CVS server.
(You might have to log in twice.) The second command will check out a series of
files and directories into ./gst-tenplate . The template you will be using is in
./ gst-tenpl ate/ gst-pl ugi n/ directory. You should look over the files in that
directory to get a general idea of the structure of a source tree for a plugin.

I FIXME ! Using the Project Stamp

This section needs some fixing from someone that is aware of how this works. The
only tool that looks like the ones cited there is gst - pl ugi ns/t ool s/ fil terstanp. sh

The first thing to do when making a new element is to specify some basic details
about it: what its name is, who wrote it, what version number it is, etc. We also need
to define an object to represent the element and to store the data the element needs.
These details are collectively known as the boilerplate.

The standard way of defining the boilerplate is simply to write some code, and fill
in some structures. As mentioned in the previous section, the easiest way to do
this is to copy a template and add functionality according to your needs. To help
you do so, there are some tools in the ./gst-pl ugi ns/tool s/ directory. One tool,
gst-qui ck-stanp , is a quick command line tool. The other, gst - proj ect - st anp ,1s

11

Chapter 3. Constructing the Boilerplate

a full GNOME druid application that takes you through the steps of creating a new

project (either a plugin or an application).

To use pluginstamp.sh, first open up a terminal window. Change to the

gst-tenpl ate
arguments to the pluginstamp.sh are:

1. the name of the plugin, and

directory, and then run the pluginstamp.sh command. The

2. the directory that should hold a new subdirectory for the source tree of the

plugin.

Note that capitalization is important for the name of the plugin. Under some
operating systems, capitalization is also important when specifying directory
names. For example, the following commands create the ExampleFilter plugin
based on the plugin template and put the output files in a new directory called

~/ src/ exanpl efil ter/

shell $ cd gst-tenplate
shell $ tool s/ pl ugi nstanp. sh

Examining the Basic Code

Exanpl eF | ter

~/src

First we will examine the code you would be likely to place in a header file (although
since the interface to the code is entirely defined by the plugin system, and doesn’t
depend on reading a header file, this is not crucial.) The code here can be found in

exanpl es/ pwg/ exanpl efilter/boiler/gs

Example 3-1. Example Plugin Header File

/* Definition of structure storing
typedef struct _GtExanpl e

struct _GstExanpl e {
Gt H enent el enent ;
GtPad *si nkpad, *sr cpad;
gbool ean silent;

ks

/* Sandard definition

typedef struct _GstExanpl eQ ass

struct Gt Exanpl eQ ass {
Gt H enent G ass parent _cl ass;

b

[* Sandard nacros for defining types
\

#oefine GST TYPE EXAMPLE
(gst _exanpl e_get _type())

#define GBT_EXAMPLH obj) \

(G.TYPE GHXK CAST((0obj), GBT_TYFE BEXAM
#define GBI _BEXAMALE A ASY Kl ass) \

(G TYPE GHX AASS CAST((Kl ass), GBT_T
#define GBI 1S EXAMPLE obj) \

(G TYFE_ GHECK TYPE((obj), GBT_TYFE EXAM
#efine GST IS EXAVPLE A.ASY obj) \

(G TYPE GHEK A.ASS TYPH((Kl ass), GST_ T

/[* Sandard function returning type
Glype gst_exanpl e _get_type (void);

12

defining a class
Gst Exanpl eQ ass;

texanp lefilt er.h.

data for this elenent. */
Gst Exanpl €

for this el enment. */

this €l enent. */

PEG tEanp le))
YPE EX AVALE, GstExa npl e))

AB)
YPE EX AVRLE))

i nf or nat i on. */

Chapter 3. Constructing the Boilerplate

GstElementDetails

The GstElementDetails structure gives a hierarchical type for the element, a human-
readable description of the element, as well as author and version data. The entries
are:

» A long, english, name for the element.

 The type of the element, as a hierarchy. The hierarchy is defined by specifying the
top level category, followed by a "/", followed by the next level category, etc. The
type should be defined according to the guidelines elsewhere in this document.
(FIXME: write the guidelines, and give a better reference to them)

* A brief description of the purpose of the element.

+ The name of the author of the element, optionally followed by a contact email
address in angle brackets.

For example:

static GGtHenentDetails exanpl e detail s
"Ah exanple plugin’,
" Exanpl €/ F r st Exanpl €",
"Shows the basic structure of a plugin’,
"your name <your.nane@our. i sp>"

1

{

The element details are registered with the plugin during the base init () func-
tion, which is part of the GObject system. The _base_init () function should be set
for this GObject in the function where you register the type with Glib.

static void

gst_ny filter_base init (GtMHF IterQass *Kkl ass)
{
static GtHenentDetails ny filter_details ={
[--}]
Ci;tEIenentClass *el enent _cl ass = GBI HBEMENT AASS (klass);
[. _ .
gst_el enent_cl ass_set_detail s (el enent _cl ass, &y filter_details);
}

GstStaticPadTemplate

A GstStaticPadTemplate is a description of a pad that the element will (or might)
create and use. It contains:

+ A short name for the pad.
« Pad direction.

» Existence property. This indicates whether the pad exists always (an “always”
pad), only in some cases (a “sometimes” pad) or only if the application requested
such a pad (a “request” pad).

 Supported types by this element (capabilities).

For example:

static GGtSaticPadTenpl ate sink factory =
GST_STAT C PAD THMRLATE (
"sink",
13

Chapter 3. Constructing the Boilerplate

14

GST PAD 9N,

GBT_PAD ALVARYS

GST_STATI C CPS (" ANY")
);

Those pad templates are registered during the _base init () function. Pads
are created from these templates in the element’s _init () function using

gst_pad new fromtenpl ate (). The template can be retrieved from the
element class using gst_el enent_cl ass_get_pad tenpl ate (). See below
for more details on this. In order to create a new pad from this template using
gst_pad new fromtenpl ate () , you will need to declare the pad template as a
global variable. More on this subject in Chapter 4.
static GGtSaticPadTenpl ate sink factory =[..1,
src_factory =[..1;
static void
gst_ny filter_base init (GtMHF IterQass *Kkl ass)
.
. .G;t H enent G ass *el enent _cl ass = GBI HBEMENT AASS (kl ass);
gst_el enent_cl ass_add pad tenpl ate (el enent _cl ass,
gst_static_pad tenpl ate get (8&rc factory));
gst_el enent_cl ass_add pad tenpl ate (el enent _cl ass,
gst_static_pad tenpl ate get (8sink factory));
[.-]
}

The last argument in a template is its type or list of supported types. In this example,
we use "ANY’, which means that this element will accept all input. In real-life situa-
tions, you would set a mimetype and optionally a set of properties to make sure that
only supported input will come in. This representation should be a string that starts
with a mimetype, then a set of comma-separates properties with their supported val-
ues. In case of an audio filter that supports raw integer 16-bit audio, mono or stereo
at any samplerate, the correct template would look like this:

static GGtSaticPadTenpl ate sink factory =
GST_STAT C PAD TEMRLATE (
"si nk",
GBT_PAD I NK
GBT_PAD ALVAYS
GBT_STAT C GRS (
"audi of x-rawint,
"wdth = (int) 16,
"depth = (int) 16, "
"endi anness = (int) BYTEOROER
"channels = (int) { 1, 21}, "
"rate = (int) [8000, 96000 "

Values surrounded by curly brackets (“{” and “}”) are lists, values surrounded by
square brackets (“[” and “]”) are ranges. Multiple sets of types are supported too,

and should be separated by a semicolon (“;”). Later, in the chapter on pads, we will
see how to use types to know the exact format of a stream: Chapter 4.

Chapter 3. Constructing the Boilerplate

Constructor Functions

Each element has three functions which are used for construction of an element.
These are the _base init() function which is meant to initialize class and child
class properties during each new child class creation; the _class_init() function,
which is used to initialise the class only once (specifying what signals, arguments and
virtual functions the class has and setting up global state); and the _init() function,
which is used to initialise a specific instance of this type.

The plugin_init function

Once we have written code defining all the parts of the plugin, we need to write
the plugin_init() function. This is a special function, which is called as soon as the
plugin is loaded, and should return TRUE or FALSE depending on whether it loaded
initialized any dependencies correctly. Also, in this function, any supported element
type in the plugin should be registered.

static ghool ean
plugininit (GtHugin *pl ugi n)
{

return gst_el enent_register (pl ugi n, "ny filter",
GST_RMNK NONE,
GI_TYFE W ALTER);
}

GST_PLWG N CEHA Ne (
GBT_VERS QN MR
GBT_VERS N MNR
"ny filter",

"M filter plugin®,
plugininit,

VERS ON

"L,

"G reaner",
"http://gstreaner.net/"

Note that the information returned by the plugin_init() function will be cached in a
central registry. For this reason, it is important that the same information is always
returned by the function: for example, it must not make element factories available
based on runtime conditions. If an element can only work in certain conditions (for
example, if the soundcard is not being used by some other process) this must be
reflected by the element being unable to enter the READY state if unavailable, rather
than the plugin attempting to deny existence of the plugin.

15

Chapter 3. Constructing the Boilerplate

16

Chapter 4. Specifying the pads

As explained before, pads are the port through which data goes in and out of your
element, and that makes them a very important item in the process of element cre-
ation. In the boilerplate code, we have seen how static pad templates take care of
registering pad templates with the element class. Here, we will see how to create ac-
tual elements, use link () and getcaps () functions to let other elements know
their capabilities and how to register functions to let data flow through the element.

In the element _init () function, you create the pad from the pad template that has
been registered with the element class in the _base_init () function. After creating
the pad, you have to seta _Ilink () function pointer and a _getcaps () function
pointer. Optionally, you can seta _chain () function pointer (on sink pads in filter
and sink elements) through which data will come in to the element, or (on source
pads in source elements) a _get () function pointer through which data will be
pulled from the element. After that, you have to register the pad with the element.
This happens like this:

static Gt Padli nkReturn gst_ny filter_link (Gt Pad *pad,
const GtGaps *caps);
static GGtGps * gst_ny filter_getcaps (Gt Pad *pad) ;
static wvoid gst_ny filter_chain (Gt Pd *pad,
Gt Dt a *data);

static void

gst_ny filter_init (GtMH I ter *filter)

{
Gst H enent G ass *klass = GST_HBEMENT GET_AASS (filter);
/[* pad through which data comes in to the element */
filter->si nkpad = gst_pad newfromtenpl ate (

gst_elenent_cl ass_get_pad tenpl ate (klass, "sink"), "sink");
gst_pad set_|ink function (filter->si nkpad, gst_ny filter_link);
gst_pad set_get caps_functi on (filter->si nkpad, gst_ny filter_getcaps);
gst_pad set_chai n_function (filter->si nkpad, gst_ny filter_chain);
gst_el enent _add pad (GsT_H.BvENT (filter), filter->sinkpad);
/[* pad through which data goes out of the element */
filter->srcpad = gst_pad newfromtenpl ate (
gst_elenent_class_get_pad tenpl ate (klass, "src"), ‘"src");
gst_pad_set_|ink function (filter->srcpad, gst_ny filter_link);
gst_pad set_get caps_functi on (filter->srcpad, gst_ny filter_getcaps);
gst_el enent _add pad (GeT_H.BvENT (filter), filter->srcpad);

[--]
}

The link function

The _link () is called during caps negotiation. This is the process where the linked
pads decide on the streamtype that will transfer between them. A full list of
type-definitions can be found in Chapter 13. A _link () receives a pointer to a
GtGps ' struct that defines the proposed streamtype, and can respond with either
“yes” (GST_PAD_LINK_OK), “no” (GST_PAD_LINK_REFUSED) or “don’t know
yet” (GST_PAD_LINK_DELAYED). If the element responds positively towards the
streamtype, that type will be used on the pad. An example:

static GstPadli nkReturn

gst_ny filter_link (Gt Pad *pad,
const GtGps *caps)
GtSructure *structure = gst_caps get_structure (caps, 0);
Gt MH I ter *filter = GSI_WHLTER (gst_pad get _parent (pad));

17

Chapter 4. Specifying the pads

GtPad *otherpad = (pad = filter->srcpad) ? filter->si nkpad
filter->srcpad;

Gt PadLi nkRet urn ret;

const gchar *ming;

/* 9nce we're an audio filter, we want to hande raw audio
* and from that audio type, we need to get the sanplerate and
* nunber of channel s. */
mne = gst_structure get nane (structure);
if (strecrp (mine, “audio/x-rawint") 1= 0) {
GTWRNNS ("Wong mnetype 9% provided, we only support 9",
mne, “audio/ x-rawint");
return GST_PAD LINK RERUED
}

/[* w're a filter and don't touch the properties of the data
* That neans we can set the given caps unnodified on the next
* el enent, and use that negotiation return value as ours. */

ret = gst_pad try set_caps (ot her pad, gst _caps_copy (caps));
if (GBT_PADLINK FALED (ret))
return ret;

/* GCapsnego succeeded, get the stream properties for interna
* usage and return SUCCESS. */

gst_structure get_int (structure, "rate", &ilter->sanplerate);

gst_structure get_int (structure, "channel s", &ilter->hannel s);

gprint ("Gyps negotiation succeeded wth 9 H @% channel s\n",
filter->sanpl erate, filter->channel s);

return ret;

In here, we check the mimetype of the provided caps. Normally, you don’t need to do
that in your own plugin/element, because the core does that for you. We simply use
it to show how to retrieve the mimetype from a provided set of caps. Types are stored
inGtSructure “internally. A GtGps ° is nothing more than a small wrapper for
0 or more structures/types. From the structure, you can also retrieve properties, as is
shown above with the function gst_structure get int 0.

If your link () function does not need to perform any specific operation (i.e. it will
only forward caps), you can set it to gst_pad proxy_link . This is a link forward-
ing function implementation provided by the core. It is useful for elements such as
i dentity

The getcaps function

18

The _getcaps () funtionis used to request the list of supported formats and proper-
ties from the element. In some cases, this will be equal to the formats provided by the
pad template, in which case this function can be omitted. In some cases, too, it will
not depend on anything inside this element, but it will rather depend on the input
from another element linked to this element’s sink or source pads. In that case, you
can use gst_pad proxy get caps as implementation, it provides getcaps forwarding
in the core. However, in many cases, the format supported by this element cannot be
defined externally, but is more specific than those provided by the pad template. In
this case, you should use a _getcaps () function. In the case as specified below, we
assume that our filter is able to resample sound, so it would be able to provide any
samplerate (indifferent from the samplerate specified on the other pad) on both pads.
It explains how a _getcaps () canbe used to do this.

static GGtGyps *
gst_ny filter_getcaps (GtPad *pad)

Chapter 4. Specifying the pads

{
GtMH I ter *filter = GI_MW HLTER (gst_pad get_parent (pad));
GtPad *otherpad = (pad = filter->srcpad) ? filter->si nkpad :
filter->srcpad;
GtCGps *othercaps = gst_pad get_al | oned caps (ot her pad), *caps;
gn n
if (gst_caps_is enpty (ot her caps))
return othercaps;
/[* Ve support *any* sanplerate, indi fferent from the sanplerate
* supported by the linked elements on both sides. */
for (i = 0, i < gst_caps get size (ot her caps); i+ {
Gt Sructure *structure = gst_caps_get_structure (ot her caps, i);
gst_structure renove field (structure, "rate");
}
caps = gst_caps_intersect (ot her caps, gst_pad get_pad tenpl at e caps

gst_caps free (ot hercaps);

return caps;

Explicit caps

Obviously, many elements will not need this complex mechanism, because they are
much simpler than that. They only support one format, or their format is fixed but the
contents of the format depend on the stream or something else. In those cases, explicit
caps are an easy way of handling caps. Explicit caps are an easy way of specifying
one, fixed, supported format on a pad. Pads using explicit caps do not implement
their own _getcaps () or _link () functions. When the exact format is known, an
elements uses gst_pad set_explicit_caps () to specify the exact format. This is
very useful for demuxers, for example.

static wvoid

gst_ny filter_init (GtMHIter *filter)
{
Gst H enent G ass *klass = GST_HBEMENT (ET_AASS (filter);
[..]
filter->srcpad = gst_pad newfromtenpl ate (
gst_elenent_class_get_pad tenpl ate (klass, "src"), ‘"src");
gst_pad use explicit_caps (filter->srcpad);
[--]
}
static void
gst_ny filter_sonefunction (GtMHIter *filter)
GtCGps *caps = ..;
[..
gst_pad set_explicit_caps (filter->srcpad, caps);
[.-]
}

19

Chapter 4. Specifying the pads

Notes

1. ../../gstreamer/html/gstreamer-GstCaps.html
2. ../../gstreamer/html/gstreamer-GstStructure.html
3. ../../gstreamer/html/gstreamer-GstCaps.html

20

Chapter 5. The chain function

The chain function is the function in which all data processing takes place. In the
case of a simple filter, chain () functions are mostly linear functions - so for each
incoming buffer, one buffer will go out, too. Below is a very simple implementation
of a chain function:

static void
gst_ny filter_chain (Gt Pad *pad,
Gthata *data)

Gt MH I ter *filter = GSI_WHLTER (gst_pad get _parent (pad));
GtBsffer *buf = GBI BIHER (data);

if (Ifilter->silent)
gprint ("Hwe data of size % bytes!\n', G BHER S ZE (buf));

gst_pad push (filter->srcpad, GST_DATA (buf));

Obviously, the above doesn’t do much useful. Instead of printing that the data is in,
you would normally process the data there. Remember, however, that buffers are not
always writable. In more advanced elements (the ones that do event processing), the
incoming data might not even be a buffer.

static void
gst_ny filter_chain (Gt Pad *pad,
Gthata *data)

Gt MH | ter *filter = GSI_WHLTER (gst_pad get _parent (pad));
GtBuffer *buf, *out buf;

if (GBI1SBAENTr (data)) {
Gt Bvent *event = GBI BVENT (data);

swtch (GST_BVENT_TYPE (event)) {
case &I BENT KB

/* end-of -stream we should close down all stream |eftovers here */
gst_ny_filter_stop_processi ng (filter);
/* fall-through to default event handling */
defaul t:
gst_pad event_defaul t (pad, event);
br eak;
}
return;
}
buf = GBS BHER (data);
outbuf = gst_ny filter_process_data (buf);

gst_buffer_unref (buf);
if (loutbuf) {

/* sonething went wong - signa an error */

gst_el enent_error (GST_H.BvBENT (filter), STREAM FALEY) (N,
return;

}

gst_pad push (filter->srcpad, GST_DATA (outbuf));

In some cases, it might be useful for an element to have control over the input data
rate, too. In that case, you probably want to write a so-called loop-based element.

21

(NULL));

Chapter 5. The chain function

Source elements (with only source pads) can also be get-based elements. These con-
cepts will be explained in the advanced section of this guide, and in the section that
specifically discusses source pads.

22

Chapter 6. What are states?

A state describes whether the element instance is initialized, whether it is ready to
transfer data and whether it is currently handling data. There are four states defined
inGreamer :GST_STATE_NULL, GST_STATE_READY, GST_STATE_PAUSED and
GST_STATE_PLAYING.

GST_STATE_NULL (from now on referred to as “NULL") is the default state of an
element. In this state, it has not allocated any runtime resources, it has not loaded
any runtime libraries and it can obviously not handle data.

GST_STATE_READY (from now on referred to as “READY”) is the next state
that an element can be in. In the READY state, an element has all default
resources (runtime-libraries, runtime-memory) allocated. However, it has not
yet allocated or defined anything that is stream-specific. When going from
NULL to READY state (GST_STATE_NULL_TO_READY), an element should
allocate any non-stream-specific resources and should load runtime-loadable
libraries (if any). When going the other way around (from READY to NULL,
GST_STATE_READY_TO_NULL), an element should unload these libraries and free
all allocated resources. Examples of such resources are hardware devices. Note that
files are generally streams, and these should thus be considered as stream-specific
resources; therefore, they should not be allocated in this state.

GST_STATE_PAUSED (from now on referred to as “PAUSED”) is a state in which an
element is by all means able to handle data; the only 'but’ here is that it doesn’t
actually handle any data. When going from the READY state into the PAUSED state
(GST_STATE_READY_TO_PAUSED), the element will usually not do anything at
all: all stream-specific info is generally handled in the _link (), which is called
during caps negotiation. Exceptions to this rule are, for example, files: these are
considered stream-specific data (since one file is one stream), and should thus be
opened in this state change. When going from the PAUSED back to READY
(GST_STATE_PAUSED_TO_READY), all stream-specific data should be discarded.

GST_STATE_PLAYING (from now on referred to as “PLAYING”) is the highest
state that an element can be in. It is similar to PAUSED, except that now, data is
actually passing over the pipeline. The transition from PAUSED to PLAYING
(GST_STATE_PAUSED_TO_PLAYING) should be as small as possible and
would ideally cause no delay at all. The same goes for the reverse transition
(GST_STATE_PLAYING_TO_PAUSED).

Managing filter state

An element can be notified of state changes through a virtual function pointer. In-
side this function, the element can initialize any sort of specific data needed by the
element, and it can optionally fail to go from one state to another.

Do not g_assert for unhandled state changes; this is taken care of by the GstElement
base class.

static GtHenentSateReturn

gst_ny filter_change state (Gt B enent *el enent);

static void

gst_ny filter_class init (GtMHFHIterQass *Kkl ass)
Gst H enent G ass *el enent _cl ass = GST_HBEMENT_AASS (kl ass);
el enent _cl ass- >change state = gst_ny filter_change state;

}

static GtHenmentSateReturn

gst_ny filter_change state (Gt B enent *el enent)

23

Chapter 6. What are states?

24

GtMH I ter *filter = GI_MW HLTER (el enent);

swtch (GSI_STATE TRANS TION (el enent)) {
case GBI_STATE NLL TO READY:
if ('gst_ny filter_allocate nenory (filter))
return GST_STATE FA LURE
br eak;
case GOl _STATE READY TONULL:
gst_ny filter_free nenory (filter);
br eak;
def aul t:
br eak;
}

if (CGST_HBVENT AASS (parent _cl ass) - >change_stat €)
return GST_HBEVENT QASS (parent_cl ass)->change_state

return GSI_STATE SUOESS

(el enent) ;

Chapter 7. Adding Arguments

The primary and most important way of controlling how an element behaves, is
through GObject properties. GObject properties are defined in the _class_init

() function. The element optionally implements a _get_property () and a
_set_property () function. These functions will be notified if an application
changes or requests the value of a property, and can then fill in the value or take
action required for that property to change value internally.

/* properties */

enum {
ARGO,
ARG S LENT
/[* ALL ME */
h
static wvoid gst_ny filter_set_property (G ect *obj ect,
gui nt prop_i d,
const GAue *val ue,
GPar angpec *pSpec) ;
static wvoid gst_ny filter_get property (G ect *obj ect,
gui nt prop_i d,
Gl ue *val ue,
Grar angpec *pspec) ;
static void
gst_ny filter_class init (GtMHIterQass *Kkl ass)
Gy ect A ass *obj ect_cl ass = GBIECTT_ AASS (kl ass);
/* define properties */
g object _class instal |l _property (obj ect_cl ass, ARG S LANT,
g _paramspec_bool ean ("silent", "Slent",

"\Wet her to be very verbose or not",
FASE GPARMVMREADMRTE);

/[* define wvirtua function pointers */

obj ect_cl ass->set_property = gst_ny filter_set_property;
obj ect_cl ass->get_property = gst_ny filter_get_property;
}
static void
gst_ny filter_set property (Gyj ect *obyj ect,
gui nt prop_id,
const GAue *val ue,
Grar angpec *pspec)
GtMH I ter *filter = GI_MW HLTER (obj ect);

swtch (propiid) {
case ARG S LHEN

filter->silent = g_val ue_get_bool ean (val ue);
gprint ("Slent argunent was changed to 9%\n",
filter->silent ? "true® @ “"false");
br eak;
defaul t:
G BIECT_ WRN | NVALI D PROPERTY I D (obj ect, prop_id, pspec) ;
br eak;
}

}

static void

gst_ny filter_get_property (G ect *obj ect,
gui nt prop_i d,
Gl ue *val ue,

25

Chapter 7. Adding Arguments

26

Garanfpec *pspec)
GtMH I ter *filter = GI_MW HLTER (obj ect);

swtch (propiid) {
case ARG S LHEN

g val ue_set _bool ean (value, filter->silent);
br eak;
defaul t:
G BIECT_ WARN | NVALI D PROPERTY I D (obj ect, prop_id, pspec) ;
br eak;

The above is a very simple example of how arguments are used. Graphical applica-
tions - for example GStreamer Editor - will use these properties and will display a
user-controlleable widget with which these properties can be changed. This means
that - for the property to be as user-friendly as possible - you should be as exact as
possible in the definition of the property. Not only in defining ranges in between
which valid properties can be located (for integers, floats, etc.), but also in using very
descriptive (better yet: internationalized) strings in the definition of the property, and
if possible using enums and flags instead of integers. The GObject documentation
describes these in a very complete way, but below, we’ll give a short example of
where this is useful. Note that using integers here would probably completely con-
fuse the user, because they make no sense in this context. The example is stolen from
videotestsrc.

typedef enum {
GST_M CEOESTSRC SWIE,
GBI_M CEOTESTSRC SNOW
GST_M CEOESTSRC B AK
} GtMdeotestsrcPattern;

[.-]

#define GBT_TYPE M DEOTESTSRC PATTERN (ost_videotestsrc_pattern get_type
static Glype
gst_videcotestsrc_pattern get type (voi d)
{
static Glype videotestsrc _pattern type =0
if (!videotestsrc_pattern type) {
static GEunval ue pattern types[] = {
{ GBI M CEJESTSRC SWTE, "snpte", "SWIE 100% color bars" 1},
{ GBT_M CEJESTSRC S\NOW "snow’, "Random (tel evision snow" 1,
{ GBI M IEJESTSRC B AK "bl ack", "0% Back' 1},
{ 0, NLL, NLL 1},
h
vi dect est src_pattern_type =
g enumregister_static ("GstM dectestsrcPattern”,
pattern_types);

return videotestsrc pattern type;
}

[..]

static void
gst_videotestsrc_class init (Gt vi dect est srcQ ass *Kkl ass)
L
. .g_obj ect_class install_property (G@IECT_ AASsS (kl ass), ARG TYFE,

0)

g _paramspec_enum ("pattern’,

Chapter 7. Adding Arquments

"Pattern”,

"Type of test pattern to generate",

GST_TYFE M DEOTESTSRC PATTERN

1, GPARMREADRTH);

27

Chapter 7. Adding Arguments

28

Chapter 8. Signals

Notes

GObject signals can be used to notify applications of events specific to this object.
Note, however, that the application needs to be aware of signals and their meaning,
so if you're looking for a generic way for application-element interaction, signals are
probably not what you're looking for. In many cases, however, signals can be very
useful. See the GObject documentation' for all internals about signals.

1. http://www.le-hacker.org/papers/gobject/index.html

29

Chapter 8. Signals

30

Chapter 9. Building a Test Application

Often, you will want to test your newly written plugin in an as small setting as pos-
sible. Usually, gst-launch is a good first step at testing a plugin. However, you will
often need more testing features than gst-launch can provide, such as seeking, events,
interactivity and more. Writing your own small testing program is the easiest way to
accomplish this. This section explains - in a few words - how to do that. For a com-
plete application development guide, see the Application Development Manual'.

At the start, you need to initialize the GBreaner core library by calling gst_init

() . You can alternatively call gst_init_wth popt_tabl es () , which will return a
pointer to popt tables. You can then use libpopt to handle the given argument table,
and this will finish the G&reaner intialization.

You can create elements using gst_el enent_factory_nake () , where the first argu-
ment is the element type that you want to create, and the second argument is a free-
form name. The example at the end uses a simple filesource - decoder - soundcard
output pipeline, but you can use specific debugging elements if that’s necessary. For
example, anidentity element can be used in the middle of the pipeline to act as a
data-to-application transmitter. This can be used to check the data for misbehaviours
or correctness in your test application. Also, you can use a fakesink element at the
end of the pipeline to dump your data to the stdout (in order to do this, set the dunp
property to TRUE). Lastly, you can use the efence element (indeed, an eletric fence
memory debugger wrapper element) to check for memory errors.

During linking, your test application can use fixation or filtered caps as a way to drive
a specific type of data to or from your element. This is a very simple and effective way
of checking multiple types of input and output in your element.

Running the pipeline happens through the gst_bin iterate () function. Note that
during running, you should connect to at least the “error” and “eos” signals on the
pipeline and/or your plugin/element to check for correct handling of this. Also, you
should add events into the pipeline and make sure your plugin handles these cor-
rectly (with respect to clocking, internal caching, etc.).

Never forget to clean up memory in your plugin or your test application. When go-
ing to the NULL state, your element should clean up allocated memory and caches.
Also, it should close down any references held to possible support libraries. Your
application should unref () the pipeline and make sure it doesn’t crash.

#include <gst/gst.h>
gint
nain (gint arcg,
gchar *argv[])
Gt H enent *pi pel i ne, *filesrc, *decoder, *filter, *si nk;

/* initialization */
gst_init (&rgc, &argy);

/* create elemnents */
pipeline = gst_pipeline new ("ny_pi peline");

filesrc = gst_el enent_factory_nake ("filesrc", "ny_filesource");
decoder = gst_el enent_factory_nake ("nad', "ny_decoder");

filter = gst_el enent_factory _nake ("ny filter", "ny filter");
si nk = gst_el enent_factory_nake ("osssink", "audi osi nk");

g obj ect_set (GQ@IECT (filesrc), "l ocation", argv[]], NLL);

/* link everything together */
gst_el enent _| i nk_nany (filesrc, decoder, filter, sink, NLL);
gst_bin add nany (GT_BN (pipeline), filesrc, decoder, filter, sink

31

NLL);

Chapter 9. Building a Test Application

Notes

32

1.

/* run */
gst_el enent_set_state (pi peline, GST_STATE LAY NG ;
vhile (gst_biniterate (GT_BN (pipeline)));

[* clean up */
gst_el enent_set_state (pi peline, GBT_STATE NLL);
gst_obj ect _unref (GBT_BIECT (pipeline));

return O;

../../manual/html/index.html

Chapter 10. Creating a Filter with a Filter Factory

A plan for the future is to create a FilterFactory, to make the process of making a
new filter a simple process of specifying a few details, and writing a small amount
of code to perform the actual data processing. Ideally, a FilterFactory would perform
the tasks of boilerplate creation, code functionality implementation, and filter regis-
tration.

Unfortunately, this has not yet been implemented. Even when someone eventually
does write a FilterFactory, this element will not be able to cover all the possibili-
ties available for filter writing. Thus, some plugins will always need to be manually
coded and registered.

Here is a rough outline of what is planned: You run the FilterFactory and give the
factory a list of appropriate function pointers and data structures to define a filter.
With a reasonable measure of preprocessor magic, you just need to provide a name
for the filter and definitions of the functions and data structures desired. Then you
call a macro from within plugin_init() that registers the new filter. All the fluff that
goes into the definition of a filter is thus be hidden from view.

33

Chapter 10. Creating a Filter with a Filter Factory

34

Chapter 11. How scheduling works

Scheduling is, in short, a method for making sure that every element gets called once
in a while to process data and prepare data for the next element. Likewise, a kernel
has a scheduler to for processes, and your brain is a very complex scheduler too in
a way. Randomly calling elements’ chain functions won't bring us far, however, so
you'll understand that the schedulers in GRreaner are a bit more complex than this.
However, as a start, it’s a nice picture. GBreaner ~ currently provides two schedulers:
a basic scheduler and an optimal scheduler. As the name says, the basic scheduler
(“basic”) is an unoptimized, but very complete and simple scheduler. The optimal
scheduler (“opt”), on the other hand, is optimized for media processing, but therefore
also more complex.

Note that schedulers only operate on one thread. If your pipeline contains multiple
threads, each thread will run with a separate scheduler. That is the reason why two
elements running in different threads need a queue-like element (a (EOOAED ele-
ment) in between them.

The Basic Scheduler

The basic scheduler assumes that each element is its own process. We don’t use UNIX
processes or POSIX threads for this, however; instead, we use so-called co-threads.
Co-threads are threads that run besides each other, but only one is active at a time.
The advantage of co-threads over normal threads is that they're lightweight. The
disadvantage is that UNIX or POSIX do not provide such a thing, so we need to
include our own co-threads stack for this to run.

The task of the scheduler here is to control which co-thread runs at what time. A
well-written scheduler based on co-threads will let an element run until it outputs
one piece of data. Upon pushing one piece of data to the next element, it will let the
next element run, and so on. Whenever a running element requires data from the
previous element, the scheduler will switch to that previous element and run that
element until it has provided data for use in the next element.

This method of running elements as needed has the disadvantage that a lot of data
will often be queued in between two elements, as the one element has provided data
but the other element hasn’t actually used it yet. These storages of in-between-data
are called bufpens, and they can be visualized as a light “queue”.

Note that since every element runs in its own (co-)thread, this scheduler is rather
heavy on your system for larger pipelines.

The Optimal Scheduler

The optimal scheduler takes advantage of the fact that several elements can be linked
together in one thread, with one element controlling the other. This works as follows:
in a series of chain-based elements, each element has a function that accepts one piece
of data, and it calls a function that provides one piece of data to the next element.
The optimal scheduler will make sure that the gst_pad push () function of the first
element directly calls the chain-function of the second element. This significantly de-
creases the latency in a pipeline. It takes similar advantage of other possibilities of
short-cutting the data path from one element to the next.

The disadvantage of the optimal scheduler is that it is not fully implemented. Also
it is badly documented; for most developers, the opt scheduler is one big black box.
Features that are not implemented include pad-unlinking within a group while run-
ning, pad-selecting (i.e. waiting for data to arrive on a list of pads), and it can’t really
cope with multi-input/-output elements (with the elements linked to each of these
in-/outputs running in the same thread) right now.

35

Chapter 11. How scheduling works

Some of our developers are intending to write a new scheduler, similar to the optimal
scheduler (but better documented and more completely implemented).

36

Chapter 12. How a loopfunc works

A loop () function is a function that is called by the scheduler, but without provid-
ing data to the element. Instead, the element will become responsible for acquiring
its own data, and it will still be responsible of sending data over to its source pads.
This method noticeably complicates scheduling; you should only write loop-based
elements when you need to. Normally, chain-based elements are preferred. Exam-
ples of elements that have to be loop-based are elements with multiple sink pads.
Since the scheduler will push data into the pads as it comes (and this might not be
synchronous), you will easily get asynchronous data on both pads, which means that
the data that arrives on the first pad has a different display timestamp than the data
arriving on the second pad at the same time. To get over these issues, you should
write such elements in a loop-based form. Other elements that are easier to write in
a loop-based form than in a chain-based form are demuxers and parsers. It is not
required to write such elements in a loop-based form, though.

Below is an example of the easiest loop-function that one can write:

static wvoid gst_ny filter_loopfunc (Gt H enent *el enent) ;
static void

gst_ny filter_init (GtMHIter *filter)

[

. .gst_el enent _set _| oopf unc (GST_B.BMENT (filter), gst_ny filter_| oopfunc);
[.-]

}

static wvoid

gst_ny filter_l oopfunc (Gt H enent *el enent)

{

GtMH I ter *filter = GI_MW HLTER (el enent);

GtData *data;

[* acquire data */

data = gst_pad pull (filter->si nkpad);
/* send data */
gst_pad push (filter->srcpad, data);

Obviously, this specific example has no single advantage over a chain-based element,
so you should never write such elements. However, it’s a good introduction to the
concept.

Multi-Input Elements

Elements with multiple sink pads need to take manual control over their input to
assure that the input is synchronized. The following example code could (should)
be used in an aggregator, i.e. an element that takes input from multiple streams and
sends it out intermangled. Not really useful in practice, but a good example, again.

typedef struct _GtMH I terlnput Gont ext {
gbool ean €0s;

Gt Buf fer *| ast buf ;

} GtMHF Iterlnput Gontext;

[--]
static void
37

Chapter 12. How a loopfunc works

gst_ny filter_init (GtMHIter *filter)

Gst H enent G ass *klass = GBI HLEMENT (BT AASS (filter);
Gt M/F | ter | nput Gont ext *cont ext ;

filter->si nkpadl = gst_pad newfromtenpl ate (
gst_elenent_class_get_pad tenpl ate (klass, "sink"), "sink 1");
context = gnewd (GtMH Iterlnputntext, 1);

gst_pad set_private data (filter->si nkpadl, context);

o]
filter->si nkpad2 = gst_pad new fromtenpl ate (
gst_elenent_class_get_pad tenpl ate (klass, "sink"), "sink_2");
context = gnewd) (GtMHIterlnputntext, 1;
gst_pad set_private data (filter->si nkpad2, context);
[.-]
gst_el enent _set _| oopf unc (GST_H.BVENT (filter),
gst_ny filter_I oopfunc);
}

[..]

static void

gst_ny filter_| oopfunc (Gt H enent *el enent)
{
Gt MH I ter *filter = GSI_WHLTER (el enent);
Qist *padist;
Gt M/F | ter | nput Gont ext *first_context = NULL;
/* @ over each sink pad, update the cache if needed, hande
* or non-responding streans and see which data we shoud hande
* next. */
for (padist = gst_elenent_get _padlist (el ement);

padiist != NLL; padist = glist_next (padlist)) {
GtPad *pad = GBI PAD (padist->data);
Gt M/F | ter | nput Gont ext *cont ext = gst_pad get_private data

if (GBI PADISSRC (pad))
conti nue;

vhile (GST_PADIS UBABLE (pad) &&
I cont ext - >e0s & !context-> ast buf) {
GtData *data = gst_pad pul (pad);

if (GBS BAENT (data)) {
/* VW hande events inmediately */
Gst Bvent *event = GST BVENT (data);

swtch (GST_BVENT_TYPE (event)) {
case GBI BVENT ECB

context->eos = TRE
gst_event _unref (event);
br eak;

case GSI_BVENT_O SGONM NUOLB
gwarning ("HBP Hw do | handle this?');
/* fall-through */

defaul t:
gst_pad event _defaul t (pad, event);
br eak;
} else {
/* ¢ store the buffer to hande synchronization bel ow
cont ext - > ast buf = GBI BHER (data);

}
}

/* synchroni ze streans by aways using the earliest buf f er

38

Chapter 12. How a loopfunc works

if (context-> asthbuf) {
if (!first_context) {
first_context = context;
} else {
if (GST_BUHER T MESTAWP (cont ext-> ast buf) <
GBT_BUAER Tl MESTAWP (first_context-> astbuf))
first_context = context;
}
}
}
/* If we hande no data at al, w're a the endof-stream so
* we shoud signa EX */
if (!'first_context) {
gst_pad push (filter->srcpad, GoT_DATA (gst_event _new (GBT_BENT B)));
gst_el enent_set_eos (el enent);
return;
}
/* S we do have datal Let’'s forward that to our source pad. */
gst_pad push (filter->srcpad, GST_DATA (first_context-> astbuf));
first_context-> ast buf = NLL;

Note that a loop-function is allowed to return. Better yet, a loop function has to return
so the scheduler can let other elements run (this is particularly true for the optimal
scheduler). Whenever the scheduler feels right, it will call the loop-function of the
element again.

The Bytestream Object

A second type of elements that wants to be loop-based, are the so-called bytestream-
elements. Until now, we’ve only dealt with elements that receive or pull full buffers
of a random size from other elements. Often, however, it is wanted to have control
over the stream at a byte-level, such as in stream parsers or demuxers. It is possible
to manually pull buffers and merge them until a certain size; it is easier, however, to
use bytestream, which wraps this behaviour.

To use bytestream, you need to load the bytestream when your plugin is loaded;
you should do this before registering the element, which you learned previously in
the Section called The plugin_init function in Chapter 3. After that, all functions of the
bytestream plugin are available in your plugin as well.

#include <gst/bytestreambyt estreamh>

static gbool ean
plugininit (GtHugin *pl ugi n)
{

if (!gst_library |oad ("gstbytestreant))
return FALSE

/* and now actually register the element */
[..
}
Bytestream-using elements are usually stream parsers or demuxers. For now, we will
take a parser as an example. Demuxers require some more magic that will be dealt

with later in this guide: Chapter 14. The goal of this parser will be to parse a text-file
and to push each line of text as a separate buffer over its source pad.

39

Chapter 12. How a loopfunc works

static void

gst_ny filter_| oopfunc (Gt H enent *el enent)
{
Gt MH I ter *filter = GSI_WHLTER (el enent);
gnt n, num
Quint8 *data;
foor (n =0, ; n#) {
num = gst_bytestreampeek byt es (filter->bs, &ata, n + 1);
if (num !'= n + 1) {
Gt Brent *event = NLL;
guint renaning;
gst_bytestreamget _status (filter->bs, & enai ni ng, &event);
if (event) ({
if (GST_BVENT_TYFE (event) = GBI _BENT_EKX®)
/* end-of-file */
gst_pad push (filter->srcpad, GST_DATA (event));
gst_el enent_set _eos (el erent);
return;
}
gst _event _unr ef (event);
}
/[* falled to read - throw error and bail out */
gst_el enent _error (el enent, STREAM READ (N, (NUW));
return;
}
[* check if the last character is a newine */
if (data[n] = '\n") {
Gt Buffer *buf = gst_buffer_newand all oc (n + 1);
/* read the line of text wthowt newine - then flush
gst_bytestreampeek data (filter->bs, &ata, n);
nencpy (GST_BUAFER DATA (buf), data, n);
GST_BUAER DATA (buf)[n] = '\0;
gst_bytestreamfl ush fast (filter->bs, n + 1);
gprint ("Pushing '9%'\n", GBT_BUAER DATA (buf));
gst_pad push (filter->srcpad, GST_DATA (buf));
return;
}
}
}
static void
gst_ny filter_change state (Gt B enent *el enent)
GtMH I ter *filter = GI_MW HLTER (el enent);
swtch (GSI_STATE TRANS TION (el enent)) {
case GBI _STATE READY TO PALEED
filter->bs = gst_byt estreamnew (filter->si nkpad);
br eak;
case GOl _STATE PALEED TO READY:
gst _byt estreamdestroy (filter->bs);
br eak;
defaul t:
br eak;
}

if (CGST_HBVENT AASS (parent _cl ass) - >change_st at €)
40

the newine

Chapter 12. How a loopfunc works

return GST_HBMVENT QASS (parent_cl ass)->change state (el enent);

return GSI_STATE SUIESS
}

In the above example, you'll notice how bytestream handles buffering of data for
you. The result is that you can handle the same data multiple times. Event handling
in bytestream is currently sort of wacky, but it works quite well. The one big disad-
vantage of bytestream is that it requires the element to be loop-based. Long-term, we
hope to have a chain-based usable version of bytestream, too.

Adding a second output
WRITEME

Modifying the test application
WRITEME

41

Chapter 12. How a loopfunc works

42

Chapter 13. Types and Properties

There is a very large set of possible types that may be used to pass data between ele-
ments. Indeed, each new element that is defined may use a new data format (though
unless at least one other element recognises that format, it will be most likely be use-
less since nothing will be able to link with it).

In order for types to be useful, and for systems like autopluggers to work, it is neces-
sary that all elements agree on the type definitions, and which properties are required
for each type. The GBreaner framework itself simply provides the ability to define
types and parameters, but does not fix the meaning of types and parameters, and
does not enforce standards on the creation of new types. This is a matter for a policy
to decide, not technical systems to enforce.

For now, the policy is simple:

» Do not create a new type if you could use one which already exists.

o If creating a new type, discuss it first with the other Gireaner =~ developers, on at
least one of: IRC, mailing lists.

¢ Try to ensure that the name for a new format is as unlikely to conflict with any-
thing else created already, and is not a more generalised name than it should be.
For example: "audio/compressed” would be too generalised a name to represent
audio data compressed with an mp3 codec. Instead "audio/mp3" might be an ap-
propriate name, or "audio/compressed" could exist and have a property indicating
the type of compression used.

+ Ensure that, when you do create a new type, you specify it clearly, and get it added
to the list of known types so that other developers can use the type correctly when
writing their elements.

Building a Simple Format for Testing

If you need a new format that has not yet been defined in our List of Defined Types,
you will want to have some general guidelines on mimetype naming, properties and
such. A mimetype would ideally be one defined by IANA; else, it should be in the
form type/x-name, where type is the sort of data this mimetype handles (audio,
video, ...) and name should be something specific for this specific type. Audio and
video mimetypes should try to support the general audio/video properties (see the
list), and can use their own properties, too. To get an idea of what properties we think
are useful, see (again) the list.

Take your time to find the right set of properties for your type. There is no reason to
hurry. Also, experimenting with this is generally a good idea. Experience learns that
theoretically thought-out types are good, but they still need practical use to assure
that they serve their needs. Make sure that your property names do not clash with
similar properties used in other types. If they match, make sure they mean the same
thing; properties with different types but the same names are not allowed.

Typefind Functions and Autoplugging

With only defining the types, we're not yet there. In order for a random data file to
be recognized and played back as such, we need a way of recognizing their type
out of the blue. For this purpose, “typefinding” was introduced. Typefinding is the
process of detecting the type of a datastream. Typefinding consists of two separate
parts: first, there’s an unlimited number of functions that we call typefind functions,
which are each able to recognize one or more types from an input stream. Then,
secondly, there’s a small engine which registers and calls each of those functions.

43

Chapter 13. Types and Properties

This is the typefind core. On top of this typefind core, you would normally write an
autoplugger, which is able to use this type detection system to dynamically build a
pipeline around an input stream. Here, we will focus only on typefind functions.

A typefind function ususally lives in gst - pl ugi ns/ gst/ t ypef i nd/ gst t ypef i ndf u
unless there’s a good reason (like library dependencies) to put it elsewhere. The
reason for this centralization is to decreate the number of plugins that need to be
loaded in order to detect a stream’s type. Below is an example that will recognize
AVI files, which start with a “RIFF” tag, then the size of the file and then an “AVI”

tag:

static void

gst_ny_typefind function (Gt TypeH nd *tf,

gpoi nt er dat a)
guint8 *data = gst_type find peek (tf, 0, 12);
if (data &%
GU NI32_FRMLE (& (guint32 *) data)[0]) =
GU NI32_FRMLE (& (guint32 *) data)[2]) =
gst_type find _suggest (tf, CBT_TYPE HND MY MM
gst_caps_new si npl e ("vi ded/ x- nsvi deo", NLL));
}
}
static gbool ean
plugininit (GtHugin *pl ugi n)
{
static gchar *exts[]] = { "ai", NLL };
if (!gst_type find register (pl ugi n, " GBI_RANK PR MR,
gst_ny_typefind function, exts,
gst _caps_new si npl e ("vi dedl x- nsvi deo”,
NLL), NULL))
return FALSE

Note that gst - pl ugi ns/ gst / t ypef i nd/ gst t ypef i ndf unct

to submit typefinding patches with new typefind functions.

Autoplugging will be discussed in great detail in the chapter

Writing an Autoplugger.

List of Defined Types

Below is a list of all the defined types in G&reaner . They are split up in separate
tables for audio, video, container, subtitle and other types, for the sake of readability.
Below each table might follow a list of notes that apply to that table. In the definition
of each type, we try to follow the types and rules as defined by IANA' for as far as

possible.
Jump directly to a specific table:

Table of Audio Types
Table of Video Types
Table of Container Types
Table of Subtitle Types
Table of Other Types

44

GBST_MWE FORTC
GBST_MWE FORTC

nction s.c,

ions.c has some simpli-
fication macros to decrease the amount of code. Make good use of those if you want

called

Chapter 13. Types and Properties

Note that many of the properties are not required, but rather optional properties. This
means that most of these properties can be extracted from the container header, but
that - in case the container header does not provide these - they can also be extracted
by parsing the stream header or the stream content. The policy is that your element
should provide the data that it knows about by only parsing its own content, not
another element’s content. Example: the AVI header provides samplerate of the con-
tained audio stream in the header. MPEG system streams don’t. This means that
an AVI stream demuxer would provide samplerate as a property for MPEG audio
streams, whereas an MPEG demuxer would not. A decoder needing this data would
require a stream parser in between two extract this from the header or calculate it
from the stream.

Table 13-1. Table of Audio Types

Mime | Descripfroperntiropentyropentyroperty Description

Type Type |Val-
ues
All audio types.
audio/[fAll |rate |integer greater) The sample rate of the data, in samples (per
audio than 0 | channel) per second.
types

channelinteger greatery The number of channels of audio data.
than 0

All vaw audio types.

audio/xUn- | endianpiedeger) G_BIG| HN®dANT of bytes in a sample. The value

raw- |struc- (1234) | G_LITTLE_ENDIAN (4321) means
int tured or “little-endian” (byte-order is “least
and G_LITTEHEnEN&ABYte first”). The value
un- (4321) | G_BIG_ENDIAN (1234) means “big-endian”
com- (byte order is “most significant byte first”).
pressedsigned booleanTRUE | Whether the values of the integer samples
raw or are signed or not. Signed samples use one
fixed- FALSE| bit to indicate sign (negative or positive) of
Integer the value. Unsigned samples are always
audio s
positive.
data.
width |integer| greater) Number of bits allocated per sample.
than 0
depth |integer greater) The number of bits used per sample. This
than 0 | must be less than or equal to the width: If
the depth is less than the width, the low bits
are assumed to be the ones used. For
example, a width of 32 and a depth of 24
means that each sample is stored in a 32 bit
word, but only the low 24 bits are actually
used.
audio/xUn- | endianpiedeger| G_BIG| HN®bANT of bytes in a sample. The value
raw- |struc- (1234) | G_LITTLE_ENDIAN (4321) means
float |tured or “little-endian” (byte-order is “least
and G_LITTEBEnHEN&IABYte first”). The value
un- (4321) | G_BIG_ENDIAN (1234) means “big-endian”
com- (byte order is “most significant byte first”).
pressed
raw
floating- 45
point
audio

data.

Chapter 13. Types and Properties

46

Mime | DescripRropertiropentyropentyroperty Description
Type Type |Val-
ues
width |integer greaterl The amount of bits used and allocated per
than 0 | sample.
buffer-| integer| greaterl The number of frames per buffer. The
frames than 0 | reason for this property is that the element
does not need to reuse buffers or use data
spanned over multiple buffers, so this
property - when used rightly - will decrease
latency. Note that some people think that
this property is very ugly, whereas others
think it is vital for the use of GBreaner in
professional audio applications.
All encoded audio types.
audio/pAC-3 There are currently no specific properties
ac3 |or defined or needed for this type.
A52
audio
streams.
audio/pADPCMayout | string The layout defines the packing of the
adpem| Au- “quickssamples in the stream. In ADPCM, most
dio time”, | formats store multiple samples per channel
streams. “dvi”, | together. This number of samples differs per
“mi- |format, hence the different layouts. On the
crosoft/long term, we probably want this variable to
or die and use something more descriptive, but
“4xm” | this will do for now.
block_aligager1 Any | Chunk buffer size.
audio/pAudio There are currently no specific properties
cinepakas defined or needed for this type.
pro-
vided
ina
Cinepak
(Quickt
time)
stream
audio/pAudio There are currently no specific properties
dv as defined or needed for this type.
pro-
vided
ina
Digi-
tal
Video
stream

Chapter 13. Types and Properties

Mime | DescripRropertiropentyropentyroperty Description
Type Type |Val-
ues
audio/pEree There are currently no specific properties
flac | Loss- defined or needed for this type.
less
Au-
dio
codec
(FLACQ).
audio/pData There are currently no specific properties
gsm |en- defined or needed for this type.
coded
by the
GSM
codec.
audio/pA- There are currently no specific properties
alaw |Law defined or needed for this type.
Au-
dio.
audio/pMu- There are currently no specific properties
mulaw| Law defined or needed for this type.
Au-
dio.
audio /MM ACE| maceveisieger) 3 or 6 | The version of the MACE audio codec used
mace |Au- to encode the stream.
dio
(used
in
Quick-
time).
audio/jmfpeg | mpegveirsieger] 1, 2 or | The MPEG-version used for encoding the
dio 4 data. The value 1 refers to MPEG-1, -2 and
data -2.5layer 1, 2 or 3. The values 2 and 4 refer to
com- the MPEG-AAC audio encoding schemes.
pressedamed booleat0 or 1 | A true value indicates that each buffer
using contains exactly one frame. A false value
the indicates that frames and buffers do not
MPEG necessarily match up.
audio
en- layer |integer 1,2, | The compression scheme layer used to
cod- or3 |compress the data (only if mpeguversion=1).
ing
sce-
hem. | bitrate|integer| greater] The bitrate, in bits per second. For VBR
than 0 | (variable bitrate) MPEG data, this is the
average bitrate.

47

Chapter 13.

48

Types and Properties
Mime | DescripRropertiropentyropentyroperty Description
Type Type |Val-
ues

audio/pMData There are currently no specific properties
qdm?2 |en- defined or needed for this type.

coded

by the

QDM

ver-

sion 2

codec.
audio/pRealmedaxersiomteger) 1 or 2 | The version of the Real Audio codec used to
pn- | Au- encode the stream. 1 stands for a 14k4
realaudibio stream, 2 stands for a 28k8 stream.

data.
audio/pMData There are currently no specific properties
speex |en- defined or needed for this type.

coded

by the

Speex

audio

codec
audio /vorbis There are currently no specific properties
vorbis | audio defined or needed for this type.

data
audio/pWindoywsmaveisiteger| 1,2 or | The version of the WMA codec used to
wma |Me- 3 encode the stream.

dia

Au-

dio

Table 13-2. Table of Video Types

Mime |DescripRroperntiropentyropentyroperty Description
Type Type |Val-
ues
All video types.
video/[* All | width |integer| greater) The width of the video image
video than 0
types
height | integer greater) The height of the video image
than 0
frameratiouble| greater) The (average) framerate in frames per
than 0 | second. Note that this property does not
guarantee in any way that it will actually
come close to this value. If you need a fixed
framerate, please use an element that
provides that (such as “videodrop”).
All raw video types.

Chapter 13. Types and Properties

Mime | DescripRropertiropentyropentyroperty Description
Type Type |Val-
ues
video/K¥UV | format| fourcc The layout of the video. See FourCC
raw- | (or YUY2, | definition site: for references and
yuv | Y'Cb’{r) YVYU,| definitions. YUY2, YVYU and UYVY are
video UYVY,| 4:2:2 packed-pixel, Y41P is 4:1:1
for- Y41P, |packed-pixel and IYU?2 is 4:4:4 packed-pixel.
mat. IYU2, | Y42B is 4:2:2 planar, YV12 and 1420 are 4:2:0
Y42B, | planar, Y41B is 4:1:1 planar and YUV9 and
YV12, | YVUO9 are 4:1:0 planar. Y800 contains
1420, |Y-samples only (black/white).
Y41B,
YUV9,
YVU9,
Y800
video/pRed- |bpp |integer] greater] The number of bits allocated per pixel. This
raw- |Green- than 0 | is usually 16, 24 or 32.
rgb | Blue
(RBG) depth |integer greatery The number of bits used per pixel by the
video. than 0 | R/G/B components. This is usually 15, 16 or
24.
endianniegeger| G_BIG| HRN®bADNr of bytes in a sample. The value
(1234) | G_LITTLE_ENDIAN (4321) means
or “little-endian” (byte-order is “least
G_LITTEBEnHEN&IABYte first”). The value
(4321) | G_BIG_ENDIAN (1234) means “big-endian”
(byte order is “most significant byte first”).
For 24/32bpp, this should always be big
endian because the byte order can be given
in both.
red_maskieger any The masks that cover all the bits used by
green_mask each of the samples. The mask should be
and given in the endianness specified above.
blue_mask This means that for 24/32bpp, the masks
might be opposite to host byte order (if you
are working on little-endian computers).
All encoded video types.
video/p3ivx There are currently no specific properties
3ivx |video. defined or needed for this type.
video/pPivX | divxversideger| 3, 4 or | Version of the DivX codec used to encode
divx |video. 5 the stream.
video/pPigital| systemshwaleanFALSE| Indicates that this stream is n0t a system
dx Video. container stream.
video/pEFMpedfvversiomteger| 1 Version of the FFMpeg video codec used to
ffv video. encode the stream.
video/H-263 There are currently no specific properties
h263 |video. defined or needed for this type.

49

Chapter 13.

50

Types and Properties
Mime | DescripRropertiropentyropentyroperty Description
Type Type |Val-
ues
video /xH-264 There are currently no specific properties
h264 |video. defined or needed for this type.
video/pHuffyyv There are currently no specific properties
huffyupvideo. defined or needed for this type.
video/Mndeo |indeovirsfeger 3 Version of the Indeo codec used to encode
indeo |video. this stream.
video/pMotior]- There are currently no specific properties
jpeg |JPEG defined or needed for this type. Note that
video. video/x-jpeg only applies to Motion-JPEG
pictures (YUY2 colourspace). RGB
colourspace JPEG images are referred to as
image/jpeg (JPEG image).
video/MREG| mpegveirsieger| 1, 2 or | Version of the MPEG codec that this stream
video. 4 was encoded with. Note that we have
different mimetypes for 3ivx, XviD, DivX
and "standard" ISO MPEG-4. This is not a
good thing and we’re fully aware of this.
However, we do not have a solution yet.
systemshmaleanFALSE| Indicates that this stream is not a system
container stream.
video/pMicrospitsmpegntasenrd1, 42 | Version of the MS-MPEG-4-like codec that
msmpedPEG; or 43 |was used to encode this version. A value of
4 41 refers to MS MPEG 4.1, 42 to 4.2 and 43 to
video version 4.3.
devia-
tions.
video/pMicrospfiisvid ¢anrtegimri Version of the codec - always 1.
msvideddoldec
1
(old-
ish
codec),
video/MRealmedinversionteger| 1, 2 or | Version of the Real Video codec that this
pn- | video. 3 stream was encoded with.
realvideo
video/MRLE |layout |string | "microsoftie RLE format inside the Microsoft AVI
rle ani- or container has a different byte layout than
ma- "quick the RLE format inside Apple’s Quicktime
tion time" |container; this property keeps track of the
for- layout.
mat. depth |integer 1 to Bitdepth of the used palette. This means
64 that the palette that belongs to this format
defines 2°depth colors.

Chapter 13. Types and Properties

Mime | DescripRropertiropentyropentyroperty Description

Type Type |Val-
ues
palette| AatBuffer Buffer containing a color palette (in

native-endian RGBA) used by this format.
The buffer is of size 4*2"depth.

video/pSorensesvqversinteger| 1 or 3 | Version of the Sorensen codec that the

svq | Video. stream was encoded with.

video/[xFarkin There are currently no specific properties
tarkin | video. defined or needed for this type.
video/xFheord| There are currently no specific properties
theora | video. defined or needed for this type.
video/)¥P-3 There are currently no specific properties
vp3 | video. defined or needed for this type. Note that

we have different mimetypes for VP-3 and
Theora, which is not necessarily a good
idea. This could probably be improved.

video/pWindowsmvveitsieger 1,2 or | Version of the WMV codec that the stream

wmv | Me- 3 was encoded with.
dia
Video
video/pXviD There are currently no specific properties
xvid |video. defined or needed for this type.
All image types.
image /jjpégt There are currently no specific properties
Pic- defined or needed for this type. Note that
ture image/jpeg only applies to
Ex- RGB-colourspace JPEG images;
pert YUY2-colourspace JPEG pictures are
Group referred to as video/x-jpeg ("Motion JPEG").
Im-
age.
image /[Pogtable There are currently no specific properties
Net- defined or needed for this type.
work
Graph-
ics
Im-
age.

Table 13-3. Table of Container Types

Mime |Descripfropertiropentyroperntyroperty Description
Type Type |Val-
ues

51

Chapter 13.

52

Types and Properties

Mime | DescripRropertiropentyropentyroperty Description

Type Type |Val-
ues

video/xAdvanged There are currently no specific properties
ms- | Stream- defined or needed for this type.
asf ing

For-

mat

(ASEF).
video/}AVI. There are currently no specific properties
msvideo defined or needed for this type.

video/pPigital| systemshwaleanTRUE
dv Video.

Indicates that this is a container system
stream rather than an elementary video
stream.

video/MMatrogka.
matroska

There are currently no specific properties
defined or needed for this type.

video/[dvpeigor] systemshealeanTRUE

Indicates that this is a container system

Pic- stream rather than an elementary video

tures stream.

Ex-

pert

Group

Sys-

tem

Stream|.
applicqdmgoge There are currently no specific properties

defined or needed for this type.

video/|dRidkkitime. There are currently no specific properties

defined or needed for this type.

video/pPigital| systemshwaleanTRUE

Indicates that this is a container system

pn- | Video. stream rather than an elementary video
realvideo stream.

audio/pPWAV. There are currently no specific properties
wav defined or needed for this type.

Table 13-4. Table of Subtitle Types

Mime | DescripRroperntiropentyroper
Type Type |Val-
ues

tfroperty Description

None defined yet.

Table 13-5. Table of Other Types

Notes

Chapter 13. Types and Properties

Mime
Type

Descri

R ef

throper
Type

tyroper
Val-
ues

tifroperty Description

None defined yet.

1. http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

53

Chapter 13. Types and Properties

54

Chapter 14. Request and Sometimes pads

Until now, we’ve only dealt with pads that are always available. However, there’s
also pads that are only being created in some cases, or only if the application re-
quests the pad. The first is called a sometimes; the second is called a request pad. The
availability of a pad (always, sometimes or request) can be seen in a pad’s template.
This chapted will discuss when each of the two is useful, how they are created and
when they should be disposed.

Sometimes pads

A “sometimes” pad is a pad that is created under certain conditions, but not in all
cases. This mostly depends on stream content: demuxers will generally parse the
stream header, decide what elementary (video, audio, subtitle, etc.) streams are em-
bedded inside the system stream, and will then create a sometimes pad for each of
those elementary streams. At its own choice, it can also create more than one instance
of each of those per element instance. The only limitation is that each newly created
pad should have a unique name. Sometimes pads are disposed when the stream data
is disposed, too (i.e. when going from PAUSED to the READY state). You should rnot
dispose the pad on EOS, because someone might re-activate the pipeline and seek
back to before the end-of-stream point. The stream should still stay valid after EOS,
at least until the stream data is disposed. In any case, the element is always the owner
of such a pad.

The example code below will parse a text file, where the first line is a number (n). The
next lines all start with a number (0 to n-1), which is the number of the source pad
over which the data should be sent.

NOROW

foo
bar
boo
bye

The code to parse this file and create the dynamic “sometimes” pads, looks like this:

typedef struct GtMHIter {
[--]

gbool ean firstrunm;

Qist *srcpadlist;

} GtMHFlter;

static void
gst_ny filter_base init (GtMHF IterQass *Kkl ass)

Gst H enent G ass *el enent _cl ass = GBI HBEMENT AASS (kl ass);
static GGtSaticPadTlenpl ate src_factory =
GST_STAT C PAD TEMPLATE (

"src_%2d",

GBT_PAD G

GBT_PAD SOMET MES

GBT_STAT C GAS (" ANY")

:)];
”gst _€elenent_cl ass_add pad tenpl ate (el enent _cl ass,
gst_static _pad tenpl ate get (8&rc factory));

[..]

}

static void

gst_ny filter_init (GtMH I ter *filter)

55

Chapter 14. Request and Sometimes pads

{
[] |
filter->firstrun = TRE
filter->srcpad i st = NLL;
}
/*
* Gt one line of data - wthout newine
*/
static GtBuffer *
gst_ny filter_getline (GtMH I ter *filter)
{
guint8 *data;
gnt n, num
/* mx. line length is 512 characters - for safety
foo (n =0 n <512 nH) {
num = gst_bytestreampeek bytes (filter->bs, &dat a,
if (num !'= n + 1)
return NLL;
/[* newine? */
if (data[n] = '\n) {
Gt BUffer *buf = gst_buffer_newand all oc (n + 1);
gst _byt estream peek byt es (filter->bs, &ata, n);
nencpy (GST_BUAFER DATA (buf), data,
GST_BUAFER DATA (buf)[n] ="\0;
gst_bytestreamfl ush fast (filter->bs, n + 1);
return buf;
}
}
}
static void
gst_ny_filter_| oopfunc (Gt H enent *el enent)
{
GtMH I ter *filter = GI_MW HLTER (el enent);
Gt Buf fer *buf ;
GtPad *pad;
gnt num n;
[* parse header */
if (filter->firstrun) {
Gt H enent G ass *kl ass;
Gst PadTenpl at e *tenpl ;
gchar *padnane;
if (!(buf = gst_nyfilter_getline (filter))) {
gst_el enent _error (el enent , STREAV READ (N,
("Sream contains no header"));
return;
}
num = atoi (GST_BUFFER DATA (buf));
gst_buffer_unref (buf);
[* for each of the streans, create a pad
klass = GST_HBEMENT GET_ AASS (filter);
tenpl = gst_element_class get_pad tenpl ate (kl ass,
for (n =0 n < num nH)
padnane = g strdup printf ("src_%92d",
pad = gst_pad newfromtenpl ate (tenpl, padnare);

g free (padnane);

56

n + 1);

"src_9%62d");

Chapter 14. Request and Sometimes pads

[* here, you would set _getcaps () and _link () functions */

gst_el enent _add pad (el enent , ;
filter->srcpad i st = g_list_append (filter->srcpadlist, pad);
}
}
/[* and now sinply parse each line and push over */
if (Y(buf = gst_nyfilter_getline (filter))) {
Gst Bvent *event = gst_event_new (GST_BVENT_EB);
Qist *padist;
for (padist = srcpadlist;
padiist != NALL;, padist = glist_next (padlist)) {
pad = GST_PAD (padist->data);
gst_event _ref (event);
gst_pad_push (pad, GBI DATA (event));
gst_event _unref (event);
gst_el enent _set _eos (el ement);
return;
}
/[* parse stream nunber and go beyond the ':’' in the data */
num = atoi (GST_BUAER DATA (buf));
if (num >= 0 & num < glist_length (filter->srcpadlist)) {
pad = G PAD (glist_nth data (filter->srcpadlist, nunj;
/[* magic buffer parsing foo */
for (n = 0, GST_BUAERDATA (buf)[n] = &
GST_BUAER DATA (buf)[n] 1= '\0; n
if (GST_BUHER DATA (buf)[n] 1= "\0) {

GtRuffer *sub;

/* create subbuffer that starts right past the space. The reason

* that we don't just forward the data pointer is because the

* pointer is no longer the start of an alocated block of nenory,

* bt just a pointer to a position sonewhere in the mdde of it.

* That cannot be freed upon disposal, so w'd either crash or have

* a nenheak. CQeating a subbuffer is asinple way to solve that. */
sub = gst_buffer_create sub (buf, n + 1, GITBFERSZE (buf) - n - 1);
gst_pad push (pad, GST_DATA (sub));

}
gst_buffer_unref (buf);
}

Note that we use a lot of checks everywhere to make sure that the content in the file
is valid. This has two purposes: first, the file could be erronous, in which case we
prevent a crash. The second and most important reason is that - in extreme cases -
the file could be used maliciously to cause undefined behaviour in the plugin, which
might lead to security issues. Always assume that the file could be used to do bad
things.

57

Chapter 14. Request and Sometimes pads

Request pads

“Request” pads are similar to sometimes pads, except that request are created on de-
mand of something outside of the element rather than something inside the element.
This concept is often used in muxers, where - for each elementary stream that is to
be placed in the output system stream - one sink pad will be requested. It can also
be used in elements with a variable number of input or outputs pads, such as the

tee (multi-output), swtch or aggregator

(both multi-input) elements. At the time

of writing this, it is unclear to me who is responsible for cleaning up the created pad
and how or when that should be done. Below is a simple example of an aggregator

based on request pads.

*/

static GGtPad * gst_ny filter_request_new pad (Gt H enent *el enent ,
Gst PadTenpl at e *tenpl ,
const gchar *nane) ;
static void
gst_ny filter_base init (GtMHIterQass *Kkl ass)
{
Gst H enent G ass *el enent _cl ass = GBI HBEMENT AASS (kl ass);
static GGtSaticPadTenpl ate sink_factory =
GST_STAT C PAD TEMPLATE
"si nk_oal",
GBT_PAD I NK
GBT_PAD | \
GBT_STAT C GAS (" ANY")
);
[--]
gst_el enent _cl ass_add pad tenpl ate (kl ass,
gst_static _pad tenpl ate get (8sink factory));
static void
gst_ny filter_class init (GtMHFHIterQass *kl ass)
Gst H enent G ass *el enent _cl ass = GST_HBEMENT_AASS (kl ass);
[..
el enent _cl ass- >r equest _new pad = gst_ny filter_request _new pad;
}
static GtPad *
gst_ny filter_request_new pad (Gt B enent *el enent ,
Gst PadTenpl at e *tenpl ,
const gchar *nang)
{
GtPad *pad;
Gt M/F | ter | nput Cont ext *cont ext ;
context = gnewd (GtMHIterlnputCntext, 1;
pad = gst_pad newfromtenpl ate (tenpl, nane);
gst_el enent_set_private data (pad, context);
[* nornal ly, you would set _link () and _getcaps () functions here
gst_el enent _add pad (el enent , pad);
return pad;
}
The _loop () function is the same as the one given previously in

Multi-Input Elements.

58

Chapter 15. Clocking

When playing complex media, each sound and video sample must be played in a spe-
cific order at a specific time. For this purpose, GStreamer provides a syncrhonization
mechanism.

Types of time

There are kinds of time in GStreamer. Clock time is an absolute time. By contrast, el-
ement time is the relative time, usually to the start of the current media stream. The
element time represents the time that should have a media sample that is being pro-
cessed by the element at this time. The element time is calculated by adding an offset
to the clock time.

Clocks

GStreamer can use different clocks. Though the system time can be used as a clock,
soundcards and other devices provides a better time source. For this reason some
elements provide a clock. The method get_clock is implemented in elements that
provide one.

As clocks return an absolute measure of time, they are not usually used directly. In-
stead, a reference to a clock is stored in any element that needs it, and it is used
internaly by GStreamer to calculate the element time.

Flow of data between elements and time

Now we will see how time information travels the pipeline in different states.

The pipeline starts playing. The source element typically knows the time of each
sample. ! First, the source element sends a discontinous event. This event carries in-
formation about the current relative time of the next sample. This relative time is
arbitrary, but it must be consistent with the timestamp that will be placed in buffers.
It is expected to be the relative time to the start of the media stream, or whatever
makes sense in the case of each media. When receiving it, the other elements adjust
their offset of the element time so that this time matches the time written in the event.

Then the source element sends media samples in buffers. This element places a
timestamp in each buffer saying when the sample should be played. When the
buffer reachs the sink pad of the last element, this element compares the current
element time with the timestamp of the buffer. If the timestamp is higher or equal it
plays the buffer, otherwise it waits until the time to place the buffer arrives with
gst_el enent_wai t ()

If the stream is seeked, the next samples sent will have a timestamp that is not ad-
justed with the element time. Therefore, the source element must send a discontinous
event.

Obligations of each element.

Let us clarify the contract between GStreamer and each element in the pipeline.

Source elements

Source elements (or parsers of formats that provide notion of time, such as MPEG, as
explained above). must place a timestamp in each buffer that they deliver. The origin
of the time used is arbitrary, but it must match the time delivered in the discontinous

59

Chapter 15. Clocking

Notes

60

event (see bellow). However, it is expected that the origin is the origin of the media
stream.

In order to initialize the element time of the rest of the pipeline, a source element
must send a discontinous event before starting to play. In addition, after seeking, a
discontinious event must be sent, because the timestamp of the next element does
not match the element time of the rest of the pipeline.

Sink elements

If the element is intended to emit samples at a specific time (real time playing), the
element should require a clock, and thus implement the method set_cl ock

In addition, before playing each sample, if the current element time
is less than the timestamp in the sample, it wait until the current
time arrives should call gst_el enent_wait() > See an example in
Data processing, events, synchronization and clocks

1. Sometimes it is a parser element the one that knows the time, for instance if a
pipeline contains a filesrc element connected to a MPEG decoder element, the
former is the one that knows the time of each sample, because the knowledge
of when to play each sample is embedded in the MPEG format. In this case this
element will be regarded as the source element for this discussion.

2. With some schedulers, gst_el enent_wait () blocks the pipeline. For instance,
if there is one audio sink element and one video sink element, while the audio
element is waiting for a sample the video element cannot play other sample. This
behaviour is under discussion, and might change in a future release.

Chapter 16. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough to control the parameters that
affect the behaviour of your element. When this is the case you can expose these
parameters as Dynamic Parameters which can be manipulated by any Dynamic Pa-
rameters aware application.

Throughout this section, the term dparams will be used as an abbreviation for "Dy-
namic Parameters".

Comparing Dynamic Parameters with GObject Properties

Your first exposure to dparams may be to convert an existing element from using
object properties to using dparams. The following table gives an overview of the
difference between these approaches. The significance of these differences should
become apparent later on.

Object Properties Dynamic Parameters
Parameter definition Class level at compile time | Any level at run time
Getting and setting Implemented by element | Handled entirely by

subclass as functions dparams subsystem
Extra objects required None - all functionality is | Element needs to create

derived from base and store a

GObject Gt DPar anvinager at

object creation

Frequency and resolution of | Object properties will only | dparams can be updated

updates be updated between calls |at any rate independent of
to _get, _chain or _loop calls to _get, _chain or
_loop up to sample-level
accuracy

Getting Started

The dparams subsystem is contained within the gstcontrol library. You need to
include the header in your element’s source file:

#include <gst/control/control.h>

Even though the gstcontrol library may be linked into the host application, you
should make sure it is loaded in your plugin_init function:

static gbool ean
plugininit (Gwdule *nodul e, GtHugin *plugin)
{

/[* load dparam support library */
if ('gst_library |oad ("gstcontrol "))
{

gst_info ("exanpl e coud not load support library: "gstcontrol'\n");

return FASE
}

61

Chapter 16. Supporting Dynamic Parameters

You need to store an instance of Gst DPar anhManager in your element’s struct:

struct _GetExanpl e {
Gt H enent el enent ;

Gst DPar anviinager *dpnan;

The Gst OPar anManager can be initialised in your element’s init function:

static void
gst_exanple_init (Gt BExanpl e *exanpl €)
{

exanpl e- >dpnan = gst_dpnan_new ("exanpl e_dpran", GST_H BMENT(exanpl €)) ;

Defining Parameter Specifications

62

You can define the dparams you need anywhere within your element but will usually
need to do so in only a couple of places:

» Intheelementinit function, just after the call to gst_dpnan_new

» Whenever a new pad is created so that parameters can affect data going into or out
of a specific pad. An example of this would be a mixer element where a separate
volume parameter is needed on every pad.

There are three different ways the dparams subsystem can pass parameters into your
element. Which one you use will depend on how that parameter is used within your
element. Each of these methods has its own function to define a required dparam:

e gst_dpnan_add requi red dparamdi rect

e gst_dpnan_add required dparamcal | ba ck

e gst_dpnan_add requi red dparamarray

These functions will return TRUE if the required dparam was added successfully.

The following function will be used as an example.

gbool ean

gst_dprman_add requi red dparamdi rect (Gt OPar anMiinager *dpnan,
Garangpec *paramspec,
gboolean is_log,
ghoolean is rate,
gpointer updat e_dat a)

The common parameters to these functions are:

Chapter 16. Supporting Dynamic Parameters

o Gst CPar anMinager *dpnan the element’s dparam manager
o Qarangpec *paramspec the param spec which defines the required dparam

» ghoolean is log whether this dparam value should be interpreted on a log scale
(such as a frequency or a decibel value)

» ghoolean israte whether this dparam value is a proportion of the sample rate.
For example with a sample rate of 44100, 0.5 would be 22050 Hz and 0.25 would
be 11025 Hz.

Direct Method

This method is the simplest and has the lowest overhead for parameters which
change less frequently than the sample rate. First you need somewhere to store the
parameter - this will usually be in your element’s struct.

struct _GetExanpl e {
Gt H enent el enent ;

Gst DPar anviinager *dpnan;
gfloat vol une;
b
Then to define the required dparam just call
gst_dpnan_add requi red dparamdi rect and pass in the

location of the parameter to change. In this case the location is
& exanpl e- >vol une)

gst_dprman_add requi red dparamdi rect (
exanpl e- >dpnan,
g _paramspec_fl oat ("vol une", " Vol une", " Volune of the audio",
0.0, 10, 08 GPRAMREADRTE),
FALSE
FALSE
& exanpl e->vol une)
);
You can now use exanpl e->vol une anywhere in your element knowing that it will

always contain the correct value to use.

Callback Method

This should be used if the you have other values to calculate whenever a parame-
ter changes. If you used the direct method you wouldn’t know if a parameter had
changed so you would have to recalculate the other values every time you needed
them. By using the callback method, other values only have to be recalculated when
the dparam value actually changes.

The following code illustrates an instance where you might want to use the callback
method. If you had a volume dparam which was represented by a gfloat number,
your element may only deal with integer arithmetic. The callback could be used to
calculate the integer scaler when the volume changes. First you will need somewhere
to store these values.

struct _GstExanpl e {
Gt H enent el enent ;

63

Chapter 16. Supporting Dynamic Parameters

64

Gst DPar anviinager *dpnan;
ofloat vol une f;
gnt vol une_i ;
b
When the required dparam is defined, the callback function
gst_exanpl e_updat e vol une and some user data (which in this case is our element
instance) is passed in to the call to gst_dpnan_add reoui red_dparamcal | back
gst_dprman_add requi red dparamcal | back (
exanpl e- >dpnan,
g paramspec_fl oat ("vol une", " \ol une", " Volune of the audio”,
0.0, 10, 0.8 GPRMWREADMTE,
FALSE,
FALSE
gst _exanpl e_updat e_vol une,
exanpl e
)i
The callback function needs to conform to this signature
typedef void (*Gst DPMpdat eFuncti on) (Galue *value, gpointer data);
In our example the callback function looks like this
static void
gst _exanpl e_updat e_vol une(G/l ue *value, gpointer data)
{
Gst Exanpl e *exanple = (Gt Exanpl e*)dat g;
greturnif _fal (GST_I S EXAMPLH exanpl €));
exanpl e- >vol une_f = g_val ue get_float(val ue);
exanpl e->vol une_i = exanpl e->vol une_f * 8192
}
Now exanpl e->vol une i can be used elsewhere and it will always contain the cor-
rect value.

Array Method

This method is quite different from the other two. It could be thought of as a spe-
cialised method which should only be used if you need the advantages that it pro-
vides. Instead of giving the element a single value it provides an array of values
where each item in the array corresponds to a sample of audio in your buffer. There

are a couple of reasons why this might be useful.

» Certain optimisations may be possible since you can iterate over your dparams

array and your buffer data together.

» Some dparams may be able to interpolate changing values at the sample rate. This
would allow the array to contain very smoothly changing values which may be

required for the stability and quality of some DSP algorithms.

The array method is currently the least mature of the three methods and is not yet
ready to be used in elements, but plugin writers should be aware of its existence for

the future.

Chapter 16. Supporting Dynamic Parameters

The Data Processing Loop

This is the most critical aspect of the dparams subsystem as it relates to elements. In
a traditional audio processing loop, a for loop will usually iterate over each sample
in the buffer, processing one sample at a time until the buffer is finished. A simplified
loop with no error checking might look something like this.

static wvoid
exanpl e_chai n (GtPad *pad, GtBuffer *huf)
{

ofloat *float_data;

int j;

Gst Exanpl e *exanple = GST_BEXAMALH GBT_(BIECT_PARENT (pad));
int numsanpl es CETBFFERSZE(buf)/& zeof(gfloat)

float_data = (gfloat *) GBT_BUHFER DATA(buf) ;

for (j =0 j < numsanples; i+ {
float_datalj] *= exanpl e->vol une;
}

To make this dparams aware, a couple of changes are needed.

static wvoid
exanpl e_chai n (GtPad *pad, GtBuffer *huf)

{
|nt j =0
Gst Exanpl e *exanple = GST_BEXAMALH GBT_(RIECT_PARENT (pad));
int numsanpl es CBTBJ:FERSIZE(buf)/sueof(groaI)
ofloat *float_data = (dfl oat *) GBT_BUHER DATA(buf) ;
int frane count down = GBT_DPVNN PREPROCESS exanpl e- >dpnan, num sanpl es, G BFHERT
vhile (GST_DCRVAN PROCESS CONTDOM exanpl e >dp nan, frane_count down, i) {
float_datalj+ *= exanpl e->vol une;
}
}
The biggest changes here are 2 new macros, GST_CAVAN PREFROEESS and
GST_DPAWAN PROCESS GOUNTDO/M . You will also notice that the for loop has become
a while loop. GBST_DPMWN PROIESS GONTDON is called as the condition for the

while loop so that any required dparams can be updated in the middle of a buffer if
required. This is because one of the required behaviours of dparams is that they can
be sample accurate. This means that parameters change at the exact timestamp that
they are supposed to - not after the buffer has finished being processed.

It may be alarming to see a macro as the condition for a while loop, but it is actually
very efficient. The macro expands to the following.

#define GST_DPVAN PROESS CONDOYIN dpnan, frane_count down, frane_count) \
(frane_ count down- - 1\
(frane_count down = GSI_OPVN PROCESY dpnan, frane_count)))

So as long as frane_count down is greater than 0, GST_DPMWN PROESS will not be
called at all. Also in many cases, GST_DPMWN PROESS will do nothing and simply
return 0, meaning that there is no more data in the buffer to process.

The macro GST_[PMN PREPROCESS will do the following:

65

Chapter 16. Supporting Dynamic Parameters

66

+ Update any dparams which are due to be updated.
+ Calculate how many samples should be processed before the next required update

* Return the number of samples until next update, or the number of samples in the
buffer - whichever is less.

In fact GST_CPMN PROESS may do the same things as GST_CPVN PREPROCESS de-
pending on the mode that the dparam manager is running in (see below).

DParam Manager Modes

A brief explanation of dparam manager modes might be useful here even though it
doesn’t generally affect the way your element is written. There are different ways me-
dia applications will be used which require that an element’s parameters be updated
in differently. These include:

o Timelined - all parameter changes are known in advance before the pipeline is run.

* Realtime low-latency - Nothing is known ahead of time about when a parameter
might change. Changes need to be propagated to the element as soon as possible.

When a dparam-aware application gets the dparam manager for an element, the first
thing it will do is set the dparam manager mode. Current modes are "synchr onous"
and "asynchr onous"

If you are in a realtime low-latency situation then the "synchronous® mode is appro-
priate. During GST_CAVAN PREPROCESS this mode will poll all dparams for required
updates and propagate them. GST_DPVMN PROESS will do nothing in this mode. To
then achieve the desired latency, the size of the buffers needs to be reduced so that
the dparams will be polled for updates at the desired frequency.

In a timelined situation, the "asynchronous" mode will be required. This
mode hasn’t actually been implemented yet but will be described anyway.
The GST_CPMMN PREPROCESS call will precalculate when and how often each
dparam needs to update for the duration of the current buffer. From then on
GBT_CPWAN PROCESS will propagate the calculated updates each time it is called
until end of the buffer. If the application is rendering to disk in non- realtlme, the
render could be sped up by increasing the buffer size. In the "asynchr onous” mode
this could be done without affecting the sample accuracy of the parameter updates

Dynamic Parameters for Video

All of the explanation so far has presumed that the buffer contains audio data with
many samples. Video should be regarded differently since a video buffer often con-
tains only 1 frame. In this case some of the complexity of dparams isn’t required but
the other benefits still make it useful for video parameters. If a buffer only contains
one frame of video, only a single call to GST_CAVNN PREPROESS should be required.
For more than one frame per buffer, treat it the same as the audio case.

Chapter 17. MIDI

WRITEME

67

Chapter 17. MIDI

68

Chapter 18. Interfaces

Previously, in the chapter Adding Arguments, we have introduced the concept of
GObject properties of controlling an element’s behaviour. This is very powerful, but
it has two big disadvantages: first of all, it is too generic, and second, it isn’t dynamic.

The first disadvantage is related to the customizability of the end-user interface that
will be built to control the element. Some properties are more important than others.
Some integer properties are better shown in a spin-button widget, whereas others
would be better represented by a slider widget. Such things are not possible because
the Ul has no actual meaning in the application. A Ul widget that represents a bitrate
property is the same as a Ul widget that represents the size of a video, as long as both
are of the same Graranfpec type. Another problem, is that things like parameter
grouping, function grouping, or parameter coupling are not really possible.

The second problem with parameters are that they are not dynamic. In many cases,
the allowed values for a property are not fixed, but depend on things that can only
be detected at runtime. The names of inputs for a TV card in a video4linux source el-
ement, for example, can only be retrieved from the kernel driver when we’ve opened
the device; this only happens when the element goes into the READY state. This
means that we cannot create an enum property type to show this to the user.

The solution to those problems is to create very specialized types of controls for cer-
tain often-used controls. We use the concept of interfaces to achieve this. The basis
of this all is the glib Giypelnterface type. For each case where we think it’s useful,
we’ve created interfaces which can be implemented by elements at their own will.
We've also created a small extension to Glypel nterface (which is static itself, too)
which allows us to query for interface availability based on runtime properties. This
extension is called Gst!npl enent sl nt erf ace

One important note: interfaces do not replace properties. Rather, interfaces should be
built next to properties. There are two important reasons for this. First of all, proper-
ties can be saved in XML files. Second, properties can be specified on the command-
line (gst-launch).

How to Implement Interfaces

Implementing interfaces is intiated in the _get_type () of your element. You
can register one or more interfaces after having registered the type itself. Some
interfaces have dependencies on other interfaces or can only be registered by
certain types of elements. You will be notified of doing that wrongly when using
the element: it will quit with failed assertions, which will explain what went
wrong. In the case of GStreamer, the only dependency that some interfaces have
is Gstlnpl enentsl nterface % Per interface, we will indicate clearly when it
depends on this extension. If it does, you need to register support for that interface
before registering support for the interface that you're wanting to support. The
example below explains how to add support for a simple interface with no further
dependencies. For a small explanation on Gt I npl enent sl nterface 3 see the next
section about the mixer interface: Mixer Interface.

static wvoid gst_ny filter_sone_interface init (Gt Sonel nt er f ace *iface);
Glype
gst_ny filter_get _type (voi d)
{
static Glype ny filter_type =0
if (Inyfilter_type) {
static const Qypelnfo ny filter_info = {

sizeof (GtMFIterQass),
(@asel ni t Func) gst_ny filter_base init,
NLLL,

69

Chapter 18. Interfaces

(@3 assl ni t Func) gst_ny filter_class init,
NLLL,
NLLL,
sizeof (GtMFIter),
0,
(@ nstancel ni t Func) gst_ny filter_init

b

static const QGnterfacelnfo sone_i nterface info ={
(G nterfacel ni t Func) gst_ny filter_sone_ interface init,
NLLL,
NLLL

h

ny filter_type =

g type register_static (GBT_TYFE WY A LTER

"GtMH Iter”,

&y filter_info, 0);

g type add interface static (ny_filter_type,

GBT_TYFE SOME | NTHRFACE,
&one_interface i nfo);

}
return ny filter_type;
}
static void
gst_ny filter_sone_interface init (Gt Sonel nt er face *i face)

/* here, you would set virtua function pointers in the interface */

}

Mixer Interface

70

The goal of the mixer interface is to provide a simple yet powerful API to applications
for audio hardware mixer/volume control. Most soundcards have hardware mixers,
where volume can be changed, they can be muted, inputs can be modified to mix
their content into what will be read from the device by applications (in our case:
audio source plugins). The mixer interface is the way to control those. The mixer
interface can also be used for volume control in software (e.g. the “volume” element).
The end goal of this interface is to allow development of hardware volume control
applications and for the control of audio volume and input/output settings.

The mixer interface requires the GstInpl enentslnterface * interface to be imple-
mented by the element. The example below will feature both, so it serves as an ex-
ample for the Gt ! npl enentsl nterface % too. In this interface, it is required to set
a function pointer for the supported () function. If you don’t, this function will
always return FALSE (default implementation) and the mixer interface implementa-
tion will not work. For the mixer interface, the only required function is l i st_tracks

() . All other function pointers in the mixer interface are optional, although it is
strongly recommended to set function pointers for at least the get_volune () and
set_volune () functions. The APIreference for this interface documents the goal of
each function, so we will limit ourselves to the implementation here.

The following example shows a mixer implementation for a software N-to-1 element.
It does not show the actual process of stream mixing, that is far too complicated for
this guide.

#include <gst/mxer/mxer.h>
typedef struct GtMHIter {
[..]

gint volune,

Chapter 18. Interfaces

Aist *tracks;

} GtMH Iter;
static wvoid gst_ny filter_inplenents_interface init (Gt I npl enent sl nt er f aceQ ass
static wvoid gst_ny filter_mxer_interface init (Gt MxerQ ass *iface);
Gype ,
gst_ny filter_get_type (voi d)
{
IR | | |
static const QGnterfacelnfo i npl enent s_i nterface i nfo = {
(G nterfacel ni t Func) gst_ny filter_inplenents_interface init ,
NLLL,
NLLL
b
static const Qnterfacelnfo nmixer_interface info = {
(G nterfacel nit Func) gst_ny filter_mxer_interface init,
NLLL,
NLLL
[h
h g type add interface static (ny_filter_type,

GST_TYFE | MPLEMENTS | NTHRFACE
&inpl enents_interface info);

g type add interface static (ny_filter_type,
GI_TYPE MXER
&mixer_interface info);
[--]
}
static wvoid
gst_ny filter_init (GtMHIter *filter)

Gt M xer Tr ack *track = NLL;

filter->vol une = 100,
filter->tracks = NLLL;
track = g object_new (GBT_TYFE MXER TRAK NLL);
track-> abel = g.strdu ("MTrack");
t rack- >num channel s =1
track->mn _vol une =0
track- >max_vol une = 100;
track->fl ags = GBI MXER TRAK STFIWRE
filter->tracks = glist_append (filter->tracks, track);
}
static ghool ean
gst_ny filter_interface supported (Gt I npl enent sl nt er f ace *i face,
Glype i face type)
greturnval _if fail (i face type = GBI_TYFE MXR FALSD);

[* for the sake of this exanple, we'll aways support it. However, nor nal 'y,

* you would check whether the device youve opened supports —nmixers. */
return TRE

}
static void
gst_ny filter_inplenents_interface i nit (Gtlnpl enentslnterfacedass *i face)
{
i face->supported = gst_ny filter_interface supported;
/*

* This function returns the list of support tracks (inputs, out put s)
* on this element instance Henments usually build this list during

71

*ife

Chapter 18. Interfaces

72

* init () or when going from NLL to READX.

*/
static const Qist *
gst_ny filter_nixer_list_tracks (Gt M xer *mxer)
GtMF I ter *filter = GGI_WHLTER (naxer);
return filter->tracks;
}
/*
* St vol une. volunes is an array of size track->numchannels, and

* each value in the array gives the wanted volume for one channel
* on the track.

*/
static void
gst_ny filter_mxer_set_vol une (Gt M xer *mxer,
Gt M xer Tr ack *track,
gnt *vol unes)
GtMH I ter *filter = GI_MW HLTER (nhxer);
filter->vol une = vol unes[O] ;

gprint ("Wlume set to 9\n", filter->volune);

static void

gst_ny filter_mxer_get_vol une (Gt M xer *mxer,
Gt M xer Tr ack *track,
gnt *vol unes)
GtMF I ter *filter = GGI_WHLTER (naxer);
vol unes| O] = filter->vol une;

static void
gst_ny filter_mxer_interface init (Gt MxerQ ass *i face)

/[* the mxer interface requires a definition of the nixer type:
* hardvare or software? */
GST_MXR TYFE (iface) = GBT_MXER STFIWRE

[* virtua function pointers */

i face->ist_tracks ost_ny filter_nixer_list_tracks;
i face->set_vol une gst_ny filter_mxer_set_vol une;
i face->get _vol une gst_ny filter_mxer_get vol une;

The mixer interface is very audio-centric. However, with the software flag set, the
mixer can be used to mix any kind of stream in a N-to-1 element to join (not aggre-
gate!) streams together into one output stream. Conceptually, that’s called mixing too.
You can always use the element factory’s “category” to indicate type of your element.
In a software element that mixes random streams, you would not be required to im-
plement the _get_vol une () or _set_vol une () functions. Rather, you would only
implement the _set_record () to enable or disable tracks in the output stream. to
make sure that a mixer-implementing element is of a certain type, check the element

factory’s category.

Chapter 18. Interfaces

Tuner Interface

As opposed to the mixer interface, that’s used to join together N streams into one
output stream by mixing all streams together, the tuner interface is used in N-to-
1 elements too, but instead of mixing the input streams, it will select one stream
and push the data of that stream to the output stream. It will discard the data of
all other streams. There is a flag that indicates whether this is a software-tuner (in
which case it is a pure software implementation, with N sink pads and 1 source pad)
or a hardware-tuner, in which case it only has one source pad, and the whole stream
selection process is done in hardware. The software case can be used in elements such
as switch. The hardware case can be used in elements with channel selection, such as
video source elements (v4lsrc, v412src, etc.). If you need a specific element type, use
the element factory’s “category” to make sure that the element is of the type that you
need. Note that the interface itself is highly analog-video-centric.

This interface requires the Gt I npl enens| nterf ace ®interface to work correctly.

The following example shows how to implement the tuner interface in an element. It
does not show the actual process of stream selection, that is irrelevant for this section.

#include <gst/tuner/tuner.h>

typedef struct GtMHIter {
[..]

gint active_input;

Aist *channel s;

} GtMFIter;
static wvoid gst_ny filter_inplenents_interface init (Gt I npl enent sl nt er f aceQ ass *ife
static wvoid gst_ny filter_tuner_interface init (Gt Tuner G ass *iface);
Gype _
gst_ny filter_get_type (voi d)
{
IR | | |
static const QGnterfacelnfo i npl enent s_i nterface i nfo = {
(G nterfacel nit Func) gst_ny filter_inplenents_interface init ,
NLLL,
NLLL
}
static const Qnterfacelnfo tuner_interface info = {
(G nterfacel nit Func) gst_ny filter_tuner_interface init,
NLLL,
NLLL
[b
h g type add interface static (ny_filter_type,

GBT_TYFE | MPLEMENTS | NTERRACE,
&inpl enents_interface info);

g type add interface static (ny_filter_type,
GB_TYFE TUINRR
&unerr_interface info);
[--]
}
static void
gst_ny filter_init (GtMH I ter *filter)
{
Gst Tuner Channel *channel = NLL;
[..
filter->active_i nput =0
filter->channel s = NLLL;
channel = g object_new (GBT_TYPE_TUNER GHANNHEL, NLL);
channel - >| abel = gstrdup ("MCannel ");
channel - >f| ags = GBT_TUNER GHANNEL | NAUT;
filter->channel s = glist_append (filter->channel s, channel);

73

Chapter 18. Interfaces

74

}
static gbool ean
gst_ny filter_interface supported (Gt I npl enent sl nt er f ace *iface,
Glype i face type)
greturnval _if fail (i face type = GBL_TYFE TUINR FALSE);

[* for the sake of this exanple, we'll awys support it. However, nor nal |y,
* you would check whether the device youve opened supports tuning. — */
return TRE

}
static void
gst_ny filter_inplenents_interface i nit (Gtlnpl enentslnterfaced ass *i face)

i face->supported = gst_ny filter_interface supported,

static const Q@ist *

gst_ny filter_tuner_list_channel s (Get Tuner *t uner)
GtMH I ter *filter = GI_MW HLTER (tuner);
return filter->channels;

}

static Gt Tuner Channel *

gst_ny filter_tuner_get channel (Gt Tuner *t uner)
GtMH I ter *filter = GI_MW HLTER (tuner);

return glist_nth data (filter->channel s,
filter->active_input);

}
static void
gst_ny filter_tuner_set_channel (Gt Tuner *t uner,
Gt Tuner Channel *channel)
GtMH I ter *filter = GI_MW HLTER (tuner);
filter->active_ i nput = g list_index (filter->channel s, channel);
g assert (filter->active_i nput >= 0);

static void
gst_ny filter_tuner_interface init (Gt Tuner @ ass *i face)

i face-> i st_channel s
i face- >get _channel
i face->set _channel

}

gst_ny filter_tuner_list_channels;
gst_ny filter_tuner_get_channel ;
gst_ny filter_tuner_set_channel ;

As said, the tuner interface is very analog video-centric. It features functions for se-
lecting an input or output, and on inputs, it features selection of a tuning frequency
if the channel supports frequency-tuning on that input. Likewise, it allows signal-
strength-acquiring if the input supports that. Frequency tuning can be used for radio
or cable-TV tuning. Signal-strength is an indication of the signal and can be used for
visual feedback to the user or for autodetection. Next to that, it also features norm
selection, which is only useful for analog video elements.

Chapter 18. Interfaces

Color Balance Interface
WRITEME

Property Probe Interface

Property probing is a generic solution to the problem that properties’ value lists in an
enumeration are static. We’ve shown enumerations in Adding Arguments. Property
probing tries to accomplish a goal similar to enumeration lists: to have a limited, ex-
plicit list of allowed values for a property. There are two differences between enumer-
ation lists and probing. Firstly, enumerations only allow strings as values; property
probing works for any value type. Secondly, the contents of a probed list of allowed
values may change during the life of an element. The contents of a enumeraiton list
are static. Crrently, property probing is being used for detection of devices (e.g. for
OSS elements, Video4linux elements, etc.). It could - in theory - be used for any prop-
erty, though.

Property probing stores the list of allowed (or recommended) values in a
GalueAray and returns that to the user. NULL is a valid return value, too. The
process of property probing is separated over two virtual functions: one for probing
the property to create a G4l ueAray , and one to retrieve the current G/l ueAray
Those two are separated because probing might take a long time (several seconds).
Also, this simpliies interface implementation in elements. For the application, there
are functions that wrap those two. For more information on this, have a look at the
API reference for the Gst Propert yProbe interface.

Below is a example of property probing for the audio filter element; it will probe for
allowed values for the “silent” property. Indeed, this value is a gboolean so it doesn’t
make much sense. Then again, it’s only an example.

#include <gst/propertyprobe/ propertyprobe. h>

static wvoid gst_ny filter_probe interface init (Gt Propert yProbel nterface *iface);
Glype
gst_ny filter_get_type (voi d)
{
[--] . . _
static const QGnterfacelnfo probe_interface info =/
(G nterfacel ni t Func) gst_ny filter_probe interface init,
NLLL,
NLLL
: h
h g type add interface static (ny_filter_type,

GST_TYPE PRIPERTY PREE,
&orobe_interface info);
[-.]

}

static const Qist *

gst_ny filter_probe get_properties (Gst Propert yRr obe *probe)
{

Qj ect @ ass *Kkl ass G BIECT_ GeT_ AASS (probe);

static @ist *props NLL;

if (‘props) {
Grarangpec *pspec;
pspec :g_object_class_find_property (klass, “"silent");
props = g list_append (props, pspec);

75

Chapter 18. Interfaces

return props;

}
static ghool ean
gst_ny filter_probe needs_probe (Gt Propert yProbe *pr obe,

gui nt prop_id,
const GParan$pec *pspec)

gboolean res = FASE

swtch (propid) {
case ARG SLEN
res = FALSE
br eak;
defaul t:
G BIECT_ VRN | NVALI D PRIPERTY I D (pr obe, prop_id, pSpec) ;
br eak;
}

return res;

}

static void

gst_ny filter_probe probe property (Gst Propert yPr obe *probe,
gui nt prop_i d,
const GParan$pec *pspec)

swtch (propid) {
case ARGSLEN
/* don't need to do much here... */
br eak;
defaul t:
G BIECT_ WARN | NVALI D PROPERTY I D (probe, prop.id, pspec) ;
br eak;
}
}

static Q@ ueAray *
gst_ny filter_get_silent_val ues (GtMH Iter *filter)
{

Gl ueAray *array

= g_val ue_array_new (2);
Ghlue value ={ 0 };

gvalueinit (&val ue, G TYFE BADEAN;

/* add TRE */

g val ue_set _bool ean (&val ue, TRE;
g val ue_array_append (array, &aue);
/* add FALSE */

g val ue_set _bool ean (&val ue, FASH;
g val ue_array_append (array, &aue);

g val ue_unset (&al ue);

return array,

}
static Ga ueAray *
gst_ny_filter_probe get_val ues (Gst Propert yRr obe *probe,
gui nt prop_id,
const GParangpec *pspec)
GtMH I ter *filter = GI_MW HLTER (probe);

Gl ueAray *array = NLL;

76

Chapter 18. Interfaces

swtch (propid) {
case ARG SLEN
array = gst_ny filter_get_silent_val ues (filter);
br eak;
defaul t:
G BIECT_ VRN | NVALI D PRIPERTY I D (pr obe, prop_id, pSpec) ;
br eak;
}

return array;

}

static void
gst_ny filter_probe interface init (Gst Propert yProbel nterface *i face)

i face->get _properties gst_ny filter_probe get_properties;

i face- >needs_probe = gst_ny filter_probe needs probe;
i face- >probe_property = gst_ny filter_probe probe property;
i face->get _val ues = gst_ny filter_probe get_val ues;

You don’t need to support any functions for getting or setting values. All that is
handled via the standard Gject _set_property () and _get_property () func-
tions.

X Overlay Interface

An X Overlay is basically a video output in a XFree86 drawable. Elements imple-
menting this interface will draw video in a X11 window. Through this interface, ap-
plications will be proposed 2 different modes to work with a plugin implemeting it.
The first mode is a passive mode where the plugin owns, creates and destroys the
X11 window. The second mode is an active mode where the application handles the
X11 window creation and then tell the plugin where it should output video. Let’s get
a bit deeper in those modes...

A plugin drawing video output in a X11 window will need to have that window at
one stage or another. Passive mode simply means that no window has been given to
the plugin before that stage, so the plugin created the window by itself. In that case
the plugin is responsible of destroying that window when it’s not needed anymore
and it has to tell the applications that a window has been created so that the appli-
cation can use it. This is done using the have xwi ndow i d signal that can be emitted
from the plugin with the gst_x_overl ay_got_xw ndow i d method.

As you probably guessed already active mode just means sending a X11
window to the plugin so that video output goes there. This is done using the
gst_x overlay set_xw ndow i d method.

It is possible to switch from one mode to another at any moment, so the plugin imple-
menting this interface has to handle all cases. There are only 2 methods that plugins
writers have to implement and they most probably look like that :

static void

gst_ny filter_set xw ndowid (Gt XQverl ay *overl ay, XD xw ndow i d)
GtMH I ter *ny filter = GBI_W HLTER (overl ay);
if (ny_filter->nandow
gst_ny filter_destroy w ndow (ny_filter->wndow;
ny_filter->w ndow = xw ndow d;

}

77

Chapter 18. Interfaces

static wvoid
gst_ny filter_get_desired size (Gt XQverl ay *overl ay,
guint *wdth, guint *height)

Gt MH I ter *ny filter = GST_W HLTER (overl ay);

*wdth = ny filter->wdth;
*height = ny_filter->height;

}
static void
gst_ny filter_xoverlay init (Gt XQver | ayQ ass *i f ace)
i face->set _xw ndow.id = gst_ny filter_set xw ndowid;
i face->get _desi red si ze = gst_ny filter_get_desired size;
}

You will also need to use the interface methods to fire signals when needed such as
in the pad link function where you will know the video geometry and maybe create
the window.

static MHA | terWndow *

gst_ny filter_wndowcreate (GtMH I ter *ny filter, gnt wdh, gnt
M/H | t er Wndow *wndow = g hnew (MAHIterWndow 1;

gst_x_overl ay_got_xw ndow i d (GST X OFRAY (nyfilter), windowvin);
}

static Gt PadLi nkRet urn

gst_ny filter_sink |ink (GtPad *pad, const GGtGps *caps)

{

Gt MH I ter *ny filter = GST_W HLTER (overl ay);

gnt wdth, hei ght ;

gbool ean ret;

ret = gst_structure get_int (structure, "w dth", & dth);

ret & gst_structure get_int (structure, "hei ght", &hei ght) ;

if (ret) return GST_PADLINK RFERED

if ('ny_filter->wndow
ny_filter->w ndow = gst_ny filter_create wndow (ny_filter, w dt h,

gst_x_overlay got_desired si ze (GBT_X OERAY (ny_filter),
W dt h, hei ght);

Navigation Interface

Notes

78

WRITEME

1. ../../gstreamer/html/GstImplementsinterface.html
2. ../../gstreamer/html/Gstlmplementsinterface.html
3. ../../gstreamer/html/GstImplementsInterface.html
4. ../../gstreamer/html/GstImplementsInterface.html

hei ght)

hei ght));

Chapter 18. Interfaces

5. ../../gstreamer/html/GstImplementsInterface.html
6. ../../gstreamer/html/Gstlmplementsinterface.html

79

Chapter 18. Interfaces

80

Chapter 19. Tagging (Metadata and Streaminfo)

Tags are pieces of information stored in a stream that are not the content itself, but
they rather describe the content. Most media container formats support tagging in one
way or another. Ogg uses VorbisComment for this, MP3 uses ID3, AVI and WAV use
RIFF’s INFO list chunk, etc. GStreamer provides a general way for elements to read
tags from the stream and expose this to the user. The tags (at least the metadata) will
be part of the stream inside the pipeline. The consequence of this is that transcoding
of files from one format to another will automatically preserve tags, as long as the
input and output format elements both support tagging.

Tags are separated in two categories in GStreamer, even though applications won't
notice anything of this. The first are called metadata, the second are called streaminfo.
Metadata are tags that describe the non-technical parts of stream content. They can
be changed without needing to re-encode the stream completely. Examples are “au-
thor”, “title” or “album”. The container format might still need to be re-written for
the tags to fit in, though. Streaminfo, on the other hand, are tags that describe the
stream contents technically. To change them, the stream needs to be re-encoded. Ex-
amples are “codec” or “bitrate”. Note that some container formats (like ID3) store
various streaminfo tags as metadata in the file container, which means that they can
be changed so that they don’t match the content in the file anymore. Still, they are
called metadata because technically, they can be changed without re-encoding the
whole stream, even though that makes them invalid. Files with such metadata tags
will have the same tag twice: once as metadata, once as streaminfo.

A tag reading element is called TagGetter in GRreamer . A tag writer is called
TagSetter '. An element supporting both can be used in a tag editor for quick tag
changing.

Reading Tags from Streams

The basic object for tags is a GtTaglist ~ * An element that is reading tags from a
stream should create an empty taglist and fill this with individual tags. Empty
tag lists can be created with gst_tag |ist_new () . Then, the element can fill
the list using gst_tag list_add val ues () . Note that an element probably
reads metadata as strings, but values might not necessarily be strings. Be sure to
use gst_val ue transform () to make sure that your data is of the right type.
After data reading, the application can be notified of the new taglist by calling
gst_el enent _found tags () . The tags should also be part of the datastream, so
they should be pushed over all source pads. The function gst_event_newtag

() creates an event from a taglist. This can be pushed over source pads using
gst_pad push () . Simple elements with only one source pad can combine all these
steps all-in-one by using the function gst_el enent _f ound_t ags_for_pad O .

The following example program will parse a file and parse the data as metadata/tags
rather than as actual content-data. It will parse each line as “name:value”, where
name is the type of metadata (title, author, ...) and value is the metadata value. The
_getline () is the same as the one given in Sometimes pads.

static void
gst_ny filter_l oopfunc (Gt B enent *el enent)
{

Gt MH I ter *filter
GtBuffer *buf;
Gst Tagl st *taglist = gst_tag |ist_new 0;

GST_W HALTER (el enent);

/[* get each line and parse as netadata */
vhile ((buf = gst_ny filter_getline (filter))) {
gchar *line = GBSI_BUHER DATA (buf), *col on_pos, *type = NLLa

/* get the position of the ':” and go beyond it */
81

Chapter 19. Tagging (Metadata and Streaminfo)

82

if (!(colon_pos = strchr (line, ':")))
goto next:
/[* get the string before that as type of netadata */
type = gstrndup (line, coonpos - line);
/[* content is one character beyond the ':' */
coonpos = &olon pos[l];
if (*colon_pos = '\0)
goto next;
/* get the netadata category, it’'s value type, store it in that

* type and add it to the taglist. */

if (gst_tag exists (type)) {
Qdue from ={ 0}, to ={ 0}

Glype to_type;

totype = gst_tag get_type (type);
gvalueinit (&rom GTYESIRNG;

g val ue set_string (&rom col on_pos);

gvalueinit (&o, totype);

g val ue transform (&rom &o0);

g val ue_unset (&rom;

gst_tag list_add val ues (taglist, GBI_TAG MERE AFFEND

type, &o, NLL);
g val ue_unset (&0);

}
next:
g free (type);
gst_buffer_unref (buf);
}
[* signal netadata @ */
gst_el enent_found tags for_pad (el enent , filter->srcpad, 0, taglist);

gst_tag list_free (taglist);
/* send EXB */

gst_pad send_event (filter->srcpad, GoT_DATA (gst_event _new (GST_BVMENT_E®)));
gst_el enent_set_eos (el erent);

}

We currently assume the core to already know the mimetype (gst_tag exists 0O)-

You can add new tags to the list of known tags using gst_tag_regi ster () .Ifyou

think the tag will be useful in more cases than just your own element, it might be
a good idea to add it to gsttag.c instead. That’s up to you to decide. If you want
to do it in your own element, it’s easiest to register the tag in one of your class init
functions, preferrably _class_init 0.

static void
gst_ny filter_class init (GtMHFHIterQass *Kkl ass)
L
' .gst _tag register ("ny_tag_nane", GBT_TAG HAG META
G TYFE STR NG

("'ny om tag"), -
("a tag that is specific to ny omn elenment"),
NLL);

Chapter 19. Tagging (Metadata and Streaminfo)

Writing Tags to Streams

Tag writers are the opposite of tag readers. Tag writers only take metadata tags into
account, since that’s the only type of tags that have to be written into a stream. Tag
writers can receive tags in three ways: internal, application and pipeline. Internal tags
are tags read by the element itself, which means that the tag writer is - in that case -
a tag reader, too. Application tags are tags provided to the element via the TagSetter
interface (which is just a layer). Pipeline tags are tags provided to the element from
within the pipeline. The element receives such tags via the GST_EVENT_TAG event,
which means that tags writers should automatically be event aware. The tag writer is
responsible for combining all these three into one list and writing them to the output
stream.

The example below will receive tags from both application and pipeline, combine
them and write them to the output stream. It implements the tag setter so applications
can set tags, and retrieves pipeline tags from incoming events.

Glype
gst_ny filter_get_type (voi d)
{
[..]
static const QGnterfacelnfo tag setter_info = {
NLLL,
NLLL,
NLLL
: h
g type add interface static (ny_filter_type,
GBT_TYFE TAG SETTER
& ag setter_info);
[..]
}
static void
gst_ny filter_init (GtMH I ter *filter)

GSTAAGSET (filter, GST ELEMENT EVENT AMRD);
[--]

}

/*

* Wite one tag.

*/

static void

gst_ny filter_wite tag (const Gt Tagli st *taglist,
const gchar *t agnane,
gpoi nt er dat a)

GtMH I ter *filter = GI_MW HLTER (data);

Gt Buf fer *buffer;

guint numval ues = gst_tag |list_get_tag size (list, tag nane), n;

const QGaue *from
Qhlue to =4{ 0 };

gvalueinit (&o, GTYFESIRNY;
for (n 0; n < numval ues; nH)

{
from gst_tag list_get val ue i ndex (taglist, t agnane, n;
g val ue transform (from &o);

buf = gst_buffer_new OK

GST_BUHER DATA (buf) g strdup printf ("96:9%", t agnane,
g val ue get_string (&0));

G BFR S ZE (buf)

3
4
;
3

(buf));
83

Chapter 19. Tagging (Metadata and Streaminfo)

84

gst_pad push (filter->srcpad, GST_DATA (buf));

g val ue_unset (&o0);

}
static void
gst_ny filter_| oopfunc (Gt B enent *el enent)
GtMH I ter *filter = GI_MW HLTER (el enent);
Gt TagSet ter *tagsetter = GBI_TAG SETTER (el enent);

GtData *data;
Gt Brent *avent ;
ghoolean eos = FALSE

Gt TagL st *taglist = gst_tag list_new 0O;
vhile ('eos) {
data = gst_pad pull (filter->si nkpad);

/* Wre not very much interested in data right now */
if (GB1SBHR (data))

gst_buffer_unref (GT_BLHER (data));
event = GST_BMENIT (data);

swtch (GST_BVENT_TYPE (event)) {
case GBI _BVENT_TAG
gst_tag list_insert (taglist, gst_event_tag get list (event),
GBT_TAG MRE FREEND)
gst_event _unref (event);
br eak;
case I BENT KB
eocs = TRE
gst _event _unr ef (event);
br eak;
defaul t:
gst_pad event_defaul t (filter->si nkpad, event);
br eak;
}
}

/[* merge tags wth the ones retrieved from the application */
if (gst_tag setter_get list (tagsetter)) {

gst_tag list_insert (taglist,

gst_tag setter_get |ist (tagsetter),

gst_tag setter_get nerge_node (tagsetter));

/[* wite tags */

gst_tag list_foreach (taglist, gst_ny filter_wite tag, filter);

[* signd EX */

gst_pad push (filter->srcpad, GST_DATA (gst_event _new (GT_BENT_E®));
gst_el enent_set_eos (el erent);

Note that normally, elements would not read the full stream before processing tags.
Rather, they would read from each sinkpad until they’ve received data (since tags
usually come in before the first data buffer) and process that.

Notes

1.
2.

Chapter 19. Tagging (Metadata and Streaminfo)

../ ../ gstreamer /html/GstTagSetter.html
../ ../ gstreamer /html/gstreamer-GstTagList.html

85

Chapter 19. Tagging (Metadata and Streaminfo)

86

Chapter 20. Events: Seeking, Navigation and More

There are many different event types but only 2 ways they can travel across the
pipeline: downstream or upstream. It is very important to understand how both of
those methods work because if one element in the pipeline is not handling them cor-
rectly the whole event system of the pipeline is broken. We will try to explain here

how these methods work and how elements are supposed to implement them.

Downstream events

Downstream events are received through the sink pad’s dataflow. Depending if your
element is loop or chain based you will receive events in your loop/chain function
as a GstData with gst_pad pul | or directly in the function call arguments. So when
receiving dataflow from the sink pad you have to check first if this data chunk is
an event. If that’s the case you check what kind of event it is to react on relevant
ones and then forward others downstream using gst_pad event _def aul t . Here is

an example for both loop and chain based elements.

/[* Chain based element */

static wvoid

gst_ny filter_chain (Gt Pad *pad,
GtData *data)

Gt MH I ter *filter = GSI_MWHLTER (gst_pad get _parent (pad));

if (GTISBENT (data) {
Gt Brent *event = GST BVENT (data);

swtch (GST_BVENT_TYPE (event)) {
case &I BENT KB

/* end-of-st?eam we should close down al stream |eftovers
gst_ny filter_stop_processi ng (filter);
/* fall-through to default event handling */
defaul t:
gst_pad event defaul t (pad, event);
br eak;
}
return;
}
}
/* Loop based elenent */
static void
gst_ny filter_loop (Gt B enent *el enent)
{
Gt MH I ter *filter = GSI_WHLTER (el enent);
GtData *data = NULL;
data = gst_pad pull (filter->si nkpad);
if (GBT1SBAENTr (data)) {
GtBent *event = G BVENT (data);

swtch (GST_BVENT_TYFE (event)) {
case Col BMANI KR

/* end-of -stream we shoud close down all stream Ieftovers
gst_ny_filter_stop_processi ng (filter);

/* fall-through to default event handling */
defaul t:

gst_pad event_defaul t (filter->si nkpad, event);

break;

here

here

87

*/

*/

Chapter 20. Events: Seeking, Navigation and More

return;

}

Upstream events

88

Upstream events are generated by an element somewhere in the pipeline and sent
using the gst_pad send_event function. This function simply realizes the pad and
call the default event handler of that pad. The default event handler of pads is
gst_pad event _def aul t , it basically sends the event to the peer pad. So upstream
events always arrive on the src pad of your element and are handled by the default
event handler except if you override that handler to handle it yourself. There are
some specific cases where you have to do that :

¢ If you have multiple sink pads in your element. In that case you will have to decide
which one of the sink pads you will send the event to.

¢ If you need to handle that event locally. For example a navigation event that you
will want to convert before sending it upstream.

The processing you will do in that event handler does not really matter but there are
important rules you have to absolutely respect because one broken element event
handler is breaking the whole pipeline event handling. Here they are :

* Always forward events you won’t handle upstream using the default
gst_pad event_defaul t method.

e If you are generating some new event based on the one you received don’t forget
to gst_event_unref the event you received.

¢ Event handler function are supposed to return TRUE or FALSE indicating if the
event has been handled or not. Never simply return TRUE/FALSE in that handler
except if you really know that you have handled that event.

Here is an example of correct upstream event handling for a plugin that wants to
modify navigation events.

static ghool ean

gst_ny_filter_hand e src_event (Gst Pad *pad,
GtBent *event)
GtMH I ter *filter = GI_MW HLTER (gst_pad get_parent (pad));

swtch (GST_BVENT_TYPE (event)) {
case GST EVENT NAM GATTON
GtBvent *new event = gst_event_new (GST_BVENT_ NN GATI AN ; ;
/* Geate a new event based on received one and then send it */

gst_event _unref (event);
return gst_pad event defaul t (pad, newevent);
defaul t:
/* Faling back to default event handling for that pad */
return gst_pad event _defaul t (pad, event);

Chapter 20. Events: Seeking, Navigation and More

All Events Together

In this chapter follows a list of all defined events that are currently being used, plus
how they should be used/interpreted. Events are stored in a GtBent ' structure,
which is simply a big C union with the types for each event in it. For the next de-
velopment cycle, we intend to switch events over to GtSructure 2, but you don’t
need to worry about that too much for now.

In this chapter, we will discuss the following events:

« End of Stream (EOS)
o Flush

« Stream Discontinuity
» Seek Request

o Stream Filler

« Interruption

» Navigation

+ Tag (metadata)

End of Stream (EOS)

End-of-stream events are sent if the stream that an element sends out is finished.
An element receiving this event (from upstream, so it receives it on its sinkpad)
will generally forward the event further downstream and set itself to EOS
(gst _el enent _set_eos ()). gst_pad event_defaul t () takes care of all this,
so most elements do not need to support this event. Exceptions are elements that
explicitly need to close a resource down on EOS, and N-to-1 elements. Note that the
stream itself is not a resource that should be closed down on EOS! Applications
might seek back to a point before EOS and set the pipeline to PLAYING again.
N-to-1 elements have been discussed previously in Multi-Input Elements.

The EOS event (GST_EVENT_EOS) has no properties, and that makes it
one of the simplest events in GBreaner . It is created using gst_event_new
(GST_BVENT_ED);

Some elements support the EOS event upstream, too. This signals the element to go
into EOS as soon as possible and signal the EOS event forward downstream. This is
useful for elements that have no concept of end-of-stream themselves. Examples are
TV card sources, audio card sources, etc. This is not (yet) part of the official specifica-
tions of this event, though.

Flush

The flush event is being sent downstream if all buffers and caches in the pipeline
should be emptied. “Queue” elements will empty their internal list of buffers when
they receive this event, for example. File sink elements (e.g. “filesink”) will flush
the kernel-to-disk cache (fdatasync () or fflush ()) when they receive this event.
Normally, elements receiving this event will simply just forward it, since most filter
or filter-like elements don’t have an internal cache of data. gst_pad event def aul t

() does just that, so for most elements, it is enough to forward the event using the
default event handler.

The flush event is created with gst_event _new (GST_ BENT ALY . Like the EOS
event, it has no properties.

89

Chapter 20. Events: Seeking, Navigation and More

90

Stream Discontinuity

A discontinuity event is sent downstream to indicate a discontinuity in the data
stream. This can happen because the application used the seek event to seek to a
different position in the stream, but it can also be because a real-time network source
temporarily lost the connection. After the connection is restored, the data stream will
continue, but not at the same point where it got lost. Therefore, a discontinuity event
is being sent downstream, too.

Depending on the element type, the event can simply be forwarded using
gst_pad event_def aul t () , or it should be parsed and a modified event should
be sent on. The last is true for demuxers, which generally have a byte-to-time
conversion concept. Their input is usually byte-based, so the incoming event will
have an offset in byte units (GST_FORMAT_BYTES), too. Elements downstream,
however, expect discontinuity events in time units, so that it can be used to update
the pipeline clock. Therefore, demuxers and similar elements should not forward
the event, but parse it, free it and send a new discontinuity event (in time units,
GST_FORMAT_TIME) further downstream.

The discontinuity event is created using the function
gst_event _new di sconti nuous () . It should set a boolean value which indicates
if the discontinuity event is sent because of a new media type (this can happen if -
during iteration - a new location was set on a network source or on a file source).
then, it should give a list of formats and offsets in that format. The list should be
terminated by 0 as format.

static void
ny_filter_sone_function (GtMH I ter *filter)

Gt Bvent *event ;
[--]

event = gst_event_new di sconti nuous (FALSE,
GST_FORAT BYTES, 0,
GST_FCRAT T ME 0,
0);
gst_pad push (filter->srcpad, GST_DATA (event));
[--]
}
Elements parsing this event can use macros and functions to access the various
properties. GBT_EVENT_DO SCONT_NEWMED A (event) checks the new-media
boolean value. gst_event_discont_get_val ue (event, format, &alue) gets

the offset of the new stream position in the specified format. If that format was not
specified when creating the event, the function returns FALSE.

Seek Request

Seek events are meant to request a new stream position to elements. This new posi-
tion can be set in several formats (time, bytes or “units” [a term indicating frames for
video, samples for audio, etc.]). Seeking can be done with respect to the end-of-file,
start-of-file or current position, and can happen in both upstream and downstream
direction. Elements receiving seek events should, depending on the element type, ei-
ther forward it (filters, decoders), change the format in which the event is given and
forward it (demuxers), handle the event by changing the file pointer in their internal
stream resource (file sources) or something else.

Seek events are, like discontinuity events, built up using positions in specified for-
mats (time, bytes, units). They are created using the function gst_event _new seek

() , where the first argument is the seek type (indicating with respect to which posi-
tion [current, end, start] the seek should be applied, and the format in which the new

Chapter 20. Events: Seeking, Navigation and More

position is given (time, bytes, units), and an offset which is the requested position in
the specified format.

static void
ny_filter_sone_function (GtMH I ter *filter)

{
Gt Bvent *event ;

[.-]

/* seek to the start of a resource */

event = gst_event_new seek (GBT_SHK &1 | GST_FORWAT_BYTES 0);
gst_pad push (filter->srcpad, GST_DATA (event));

]

Elements parsing this event can use macros and functions to access the properties.
The seek type can be retrieved using GBST_BVENT_SHK TYPE (event) . This
seek type contains both the indicator of with respect to what position the seek
should be applied, and the format in which the seek event is given. To get either

one of these properties separately, use GBSI_EVENT_SHEK FORWAT (event) or
GST_BVENI_SHK METHD (event) . The requested position is available through
GBT_BVENI =K OFFET (event) ,and is given in the specified format.

Stream Filler

The filler event is, as the name says, a “filler” of the stream which has no special
meaning associated with itself. It is used to provide data to downstream elements and
should be interpreted as a way of assuring that the normal data flow will continue
further downstream. The event is especially intended for real-time MIDI source ele-
ments, which only generate data when something changes. MIDI decoders will there-
fore stall if nothing changes for several seconds, and therefore playback will stop. The
filler event is sent downstream to assure the MIDI decoder that nothing changed, so
that the normal decoding process will continue and playback will, too. Unless you in-
tend to work with MIDI or other control-language-based data types, you don’t need

this event. You can mostly simply forward it with gst_pad event _defaul t O .
The stream filler is created using gst_event _new (GST BENT A LLER); . It has no
properties.

Interruption

The interrupt event is generated by queue elements and sent downstream if a timeout
occurs on the stream. The scheduler will use this event to get back in its own main
loop and schedule other elements. This prevents deadlocks or a stream stall if no
data is generated over a part of the pipeline for a considerable amount of time. The
scheduler will process this event internally, so any normal elements do not need to
generate or handle this event at all.

The difference between the filler event and the interrupt event is that the filler event
is a real part of a pipeline, so it will reach fellow elements, which can use it to "do
nothing else than what I used to do". The interrupt event never reaches fellow ele-
ments.

The interrupt event (gst_event_new (GST_BVENT_I NTERRLPT) ;) has no properties.

Navigation
WRITEME

91

Chapter 20. Events: Seeking, Navigation and More

Notes

92

Tag (metadata)

Tagging events are being sent downstream to indicate the tags as parsed from the
stream data. This is currently used to preserve tags during stream transcoding from
one format to the other. Tags are discussed extensively in Chapter 19. Most elements
will simply forward the event by calling gst_pad event _defaul t 0.

The tag event is created using the function gst_event_newtag () . It requires a
filled taglist as argument.

Elements parsing this event can use the function gst_event_tag get_list
(event) to acquire the taglist that was parsed.

1. ../../gstreamer/html/gstreamer-GstEvent.html
2. ../../gstreamer/html/gstreamer-GstStructure.html

Chapter 21. Writing a Source

Source elements are the start of a data streaming pipeline. Source elements have no
sink pads and have one or more source pads. We will focus on single-sourcepad el-
ements here, but the concepts apply equally well to multi-sourcepad elements. This
chapter will explain the essentials of source elements, which features it should imple-
ment and which it doesn’t have to, and how source elements will interact with other
elements in a pipeline.

The get()-function

Source elements have the special option of having a _get () -function rather than a
_loop ()-or_chain () -function. A _get () -function is called by the scheduler ev-
ery time the next elements needs data. Apart from corner cases, every source element
will want to be _get () -based.

static GGtData * gst_ny source get (GtPad *pad);
static wvoid
gst_ny source init (Gt MySour ce *src)
[.] _
gst_pad set_get _function (src->srcpad, gst_ny_source get);

static GtData *
gst_ny_source_get (GtPad *pad)
{

GstBuffer *buf f er;

buffer = gst_buffer_new 0;

GST_BUHER DATA (buf) gstrdup ("hello pipeline!™);
G BFR S ZE (buf) strlen (GST_BUAER DATA (buf));
[* terminating 1o ¥

GBT_BLFER M9 ZE (buf) = G BHERSZE (buf) + 1

return GBI DATA (buffer);

Events, querying and converting

One of the most important functions of source elements is to implement correct
query, convert and event handling functions. Those will continuously describe the
current state of the stream. Query functions can be used to get stream properties
such as current position and length. This can be used by fellow elements to con-
vert this same value into a different unit, or by appliations to provide information
about the length /position of the stream to the user. Conversion functions are used to
convert such values from one unit to another. Lastly, events are mostly used to seek
to positions inside the stream. Any function is essentially optional, but the element
should try to provide as much information as it knows. Note that elements provid-
ing an event function should also list their supported events in an _get _event_nask

() function. Elements supporting query operations should list the supported opera-
tions in a _get_query_types () function. Elements supporting either conversion or
query operations should also implement a _get_fornats () function.

An example source element could, for example, be an element that continuously gen-
erates a wave tone at 44,1 kHz, mono, 16-bit. This element will generate 44100 audio
samples per second or 88,2 kB/s. This information can be used to implement such
functions:

93

Chapter 21. Writing a Source

static Gt Fornat * gst_ny source fornat_|ist (Gt Pad * ;
static Gt QueryType * gst_ny source query |ist (Gt Pad *pad) ;
static ghool ean gst_ny_source_convert (Gt Pad *pad,
Gst For nat fromfnt,
gint64 fromval ,
Gt For natt *to fn,
gint64 *toval);
static gbool ean gst_ny_source_query (Gt Pad *pad,
Gt Quer yType type,
Gst For nat *to fm,
gint64 *toval);
static void
gst_ny source_ init (Gt MySour ce *src)
[.] _
gst_pad_set_convert_function ('src->srcpad, gst_ny_sour ce_convert);
gst_pad set_fornats_function (src->srcpad, gst_ny source fornat_list);
gst_pad set_query function (src->srcpad, gst _ny_source_gquery);
gst_pad set_query type function (src->srcpad, gst_ny_source_query |ist);
}
/*
* This function returns an enuneration of supported Gt Fornat
* types in the query() or convert() functi ons. See gst/gstfornat. h
* for a full [list.
*/
static Gt Fornat *
gst_ny source fornat_|ist (GtPad *pad)
static const Gt Fornat fornat s] = {
GBT_FARWAT_T1 ME,
GBT_FORWAT _[CHFALLT, /* nmeans "audio sanples" @ */
GBT_FORWAT_BYTES
0
b
return fornats;
}
/*
* This function returns an enuneration of the supported query()
* operations. dnce we generate audio internaly, we only provide
* an indication of how nany sanples we've played so far. Hle sources
* or such elenents could aso provide GBI _QERY TOAL for the tota
* stream length, or other things. See gst/gstquery.h for details.
*/
static Gt QueryType *
gst_ny source query |ist (GtPad *pad)
static const Gt QueryType query_types|] {
GT_ QERY KA TION
0,
b
return query_types;
}
/*
* And below are the logica i npl enent at i ons.
*/
static ghool ean

94

(Gt Pad
fromfn,
fromval,
*to fm,
*to val)

gst_ny_sour ce_convert
Gst For nat

gint64
Gst For nait
gint64

res = TRE

gbool ean
*src

Gst MSour ce

swtch (fromfm) {
case oI FORWAT_TI ME
swtch (*to fm) {
case GBI FORWT_TI ME
/* nothing */
br eak;

case GBI _FARWI_BYTES
*toval = fromva

br eak;

case GBI _FORWAT [HAULT:
*to val = fromval

br eak;

defaul t:
res = FASE
br eak;

}
br eak;

case oI FORWAT BYTES
swtch (*to fm) {
case GBI FORWT_TI ME
*to val = fromval

br eak;

case GBI _FARWI_BYTES
/* nothing */
br eak;

case GBI _FORWAT [HAULT:
*to val = fromval

br eak;

defaul t:
res = FASE

br eak;

}
br eak;

case GBI FORWAT [HALLT:

swtch (*to fm) {
case GBI FORWNT_TIME
*to val = fromval

br eak;

case GBI _FARWI_BYTES
*toval = fromva

br eak;

= G W SORE

/ (GBT_SEOO\D

/ (GBT_SEOOD

Chapter 21. Writing a Source

*pad’

(gst_pad get_parent (pad));

| (44100 * 2));

| 44100);

* (GBT SEOND /(44100 * 2));

! 2

(GBSO [44100);

* 2

case GST_FCRMVAT DEFALLT:

/* nothing */
br eak;

defaul t:
res = FASE

95

Chapter 21. Writing a Source

break;
}
br eak;
defaul t:
res = FALSE
br eak;
}
return res;
}
static gbool ean
gst_ny_source_query (Gt Pad *pad,
Gt QeryType type,
Gt For natt *to fm,
gint64 *to val)
{
Gst MSour ce *src = GBI_W SORE (gst_pad get_parent (pad));
ghoolean res = TRE

swtch (type) {
case GBI QERY PFHTI N

res = gst_pad convert (pad, GBT_FCRWNT_BYTES

tofm, towva);
br eak;
defaul t:
res = FALSE
br eak;
}
return res;

Be sure to increase src->total_bytes after each call to your _get

src->total _bytes,

() function.

Event handling has already been explained previously in the events chapter.

Time, clocking and synchronization

The above example does not provide any timing info, but will suffice for elementary
data sources such as a file source or network data source element. Things become
slightly more complicated, but still very simple, if we create artificial video or au-
dio data sources, such as a video test image source or an artificial audio source (e.g.
sinesrc orsilence).It will become more complicated if we want the element to be a
realtime capture source, such as a video4linux source (for reading video frames from
a TV card) or an ALSA source (for reading data from soundcards supported by an
ALSA-driver). Here, we will need to make the element aware of timing and clocking.

Timestamps can essentially be generated from all the information given above with-
out any difficulty. We could add a very small amount of code to generate perfectly

timestamped buffers from our _get () -function:

static void

gst_ny source init (Gt MySour ce *src)
{

[..]

src->total _bytes =0

}

static Gthata *

gst_ny_source _get (GtPad *pad)

96

Chapter 21. Writing a Source

Gst MSour ce *src = GBI_W SORE (gst_pad get_parent (pad));
Gt Buf fer *buf ;
GtFormat fmt = GST_FCRWT_TIME

y

GST_ BUFFER DLRATI ON (buf) = GST BFFERSZE (buf) * (GBT.SEOOD / (44100 * 2));
GST_BUHER T MESTAWP (buf) = src->tota _bytes * (GBILEIOND /[(44100 * 2);
src->total _bytes += GBI BHAHERSZE (buf);

return GST_DATA (buf);

}
static GtSateReturn
gst_ny_source_change state (Gt B enent *el enent)

Gst MySour ce *src = GBT_W SORE (el enent);

swtch (GBI_STATE PENO NG (el enent)) {
case J STATE PALEED TO READY:
src->total _bytes =0
br eak;

if (CGST_HBVENT AASS (parent _cl ass) - >change_st at €)
return GST_HBMVENT QASS (parent_cl ass)->change_state (el enent) ;

return GSI_STATE SUIOESS

That wasn’t too hard. Now, let’s assume real-time elements. Those can either have
hardware-timing, in which case we can rely on backends to provide sync for us (in
which case you probably want to provide a clock), or we will have to emulate that
internally (e.g. to acquire sync in artificial data elements such as sinesrc). Let’s first
look at the second option (software sync). The first option (hardware sync + provid-
ing a clock) does not require any special code with respect to timing, and the clocking
section already explained how to provide a clock.

enum {
ARG O,

. 'gm_m

[..]

static void

gst_ny source class init (Gt M/Sour ce@ ass *Kkl ass)
Gy ect A ass *obj ect_cl ass = GBIECTT_ AASS (kl ass);
[--]
g object_class install_property (obj ect_cl ass, ARG SING
g _paramspec_bool ean ("sync", "Sync", "Synchroni ze to clock",
FASE GPARMVMREADMRTE);
[--]
}
static void
gst_ny source_ init (Gt My/Sour ce *src)
[--]
Src->sync = FALSE
}

97

Chapter 21. Writing a Source

static GtData *
gst_ny_source_get (GtPad *pad)
{

Gst MySour ce *src = GBT_W SORE (gst_pad get_parent (pad));
GtBuffer *buf ;
[..
if (src->sync) {
/[* wait on clock */
gst_el enent_wai t (GST_B.BMENT (src), GBT_BUHER T MESTAWP (buf));
}
return GST_DATA (buf);
}
static wvoid
gst_ny _source get_property (G ect *0obj ect,
qui nt prop_id,
@Par anBoec *pspec,
Qs ue *val ue)
Gst M/Sour ce *src = GBI_W SORE (gst_pad get_parent (pad));
swtch (propid) {
[.-]
case ARGSWNC
g val ue_set _bool ean (value, src->sync);
br eak;
[..]
}
}
static void
gst_ny _source get_property (Gyj ect *0obj ect,
gui nt prop_i d,
GPar angoec *pspec,
const Gaue *val ue)
Gst MySour ce *src = GBT_W SORE (gst_pad _get_parent (pad));

swtch (propid) {
[..]
case ARG SNC
src->sync = g_val ue_get_bool ean (val ue);
br eak;

Most of this is GObject wrapping code. The actual code to do software-sync (in the

_get () -function) is relatively small.

Using special memory

In some cases, it might be useful to use specially allocated memory (e.g. nmap () ‘ed
DMA’able memory) in your buffers, and those will require special handling when
they are being dereferenced. For this, G&reaner uses the concept of buffer-free func-
tions. Those are special functions pointers that an element can set on buffers that
it created itself. The given function will be called when the buffer has been derefer-
enced, so that the element can clean up or re-use memory internally rather than using

the default implementation (which simply calls g free () on the data pointer).

98

Chapter 21. Writing a Source

static wvoid
gst_ny source buffer_free (GtBuffer *buf)

Gst MySour ce *src = GBT_W SORE (GST_BUHER PR \VATE (buf));

/* do useful things here, like re-queueing the buffer which
* nakes it available for DMA again. The default hander wll
* not free this buffer because of the GBI BUHFER DONTHRE
* flag. */

}
static GGthata *
gst_ny_source_get (GtPad *pad)
{
Gst MySour ce *src = GBT_W SORE (gst_pad _get _parent (pad));

Gt Buffer *buf ;

y
buf = gst_buffer_new 0;

GBI BLUHER FREE DATA RNC (buf) = gst_ny source buffer_free;
GST_BUHER PR VATE (buf) = src;
GST_BIFR ALAG ST (buf, GBI _BUFER READOLY | GBT_BUAER DNIFRE);

[..]
return GST_DATA (buf);

Note that this concept should not be used to decrease the number of calls made to
functions such as g nelloc () inside your element. We have better ways of doing
that elsewhere (&reaner core, Glib, Glibc, Linux kernel, etc.).

99

Chapter 21. Writing a Source

100

Chapter 22. Writing a Sink

Sinks are output elements that, opposite to sources, have no source pads and one or
more (usually one) sink pad. They can be sound card outputs, disk writers, etc. This
chapter will discuss the basic implementation of sink elements.

Data processing, events, synchronization and clocks

Except for corner cases, sink elements will be _chain () -based elements. The con-
cept of such elements has been discussed before in detail, so that will be skipped
here. What is very important in sink elements, specifically in real-time audio and
video sources (such as osssink or xinagesink), is event handling in the _chain
() -function, because most elements rely on EOS-handling of the sink element, and
because A/V synchronization can only be perfect if the element takes this into ac-
count.

How to achieve synchronization between streams depends on whether you're a
clock-providing or a clock-receiving element. If you're the clock provider, you can
do with time whatever you want. Correct handling would mean that you check
whether the end of the previous buffer (if any) and the start of the current buffer
are the same. If so, there’s no gap between the two and you can continue playing
right away. If there is a gap, then you'll need to wait for your clock to reach that
time. How to do that depends on the element type. In the case of audio output
elements, you would output silence for a while. In the case of video, you would
show background color. In case of subtitles, show no subtitles at all.

In the case that the provided clock and the received clock are not the same (or in the
case where your element provides no clock, which is the same), you simply wait for
the clock to reach the timestamp of the current buffer and then you handle the data
in it.

A simple data handling function would look like this:

static void

gst_ny_sink_chai n (GtPd *pad,
GtData *data)

{

GtMSnk *sink = GI W SN (gst_pad get_parent (pad));
Gt Buffer *buf ;
Gst @ ockTi ne tine;

[* only needed if the elenent is GST_BVENT_ AMRE */
if (GBI1SBAENTr (data)) {
GtBent *event = GG BVENT (data);

swtch (GST_BVENT_TYPE (event)) {
case Col BANI KR
[if your elenent provides a clock, disable (inactivate) it here]
/* pass-through */

defaul t:
/* the default handl er handles discontinuities, even if your
* elenent provides a clock! */
gst_pad event_defaul t (pad, event);
break;
}
return;
}
buf = GST BFER (data);
if (G BHERTMEISVALUD (buf))
tine = GBI _BUHER TI MESTAMP (buf);

101

Chapter 22. Writing a Sink

el se
tine = sink->expected next_tine;

/* Synchroni zati on - the property is only usefu in case the
* elenent has the option of not syncing. S it is not useful
* for hardware-sync (cl ock- provi di ng) el enent s. */

if (sink->sync) {
/[* This check is only needed if you provide a clock. Hse,
* you can always execute the ’'else’ clause. */

if (sink->provided cl ock = sink->recei ved_cl ock) {
/* GBI _SHIOND / 10 is 0,1 sec, it's an arhitrary value. The
* casts are needed because else it'll be unsigned and we
* won't detect negative values. @ */
if (llabs ((gint6d) si nk->expect ed next _tine - (gint64d) tine) >

(Gr&Ex N / 10) {
/* so are we ahead or behind? */

if (tine > sink->expected tine) {
/* we need to wait a while... In case of audio, output
* silence. In case of video, output background col or.
* In case of subtitles, display nothing. */
[..]
} else {
/* Drop data. */
[..]
}
}
} else {

/* You coud do nore sophisticated things here, but we'll
* keep it sinple for the purpose of the exanple. */
gst_el enent_wai t (GST_B.BVENT (sink), tine);
}
}

/* Add now hande the data. */
[--]
}

Special memory

Like source elements, sink elements can sometimes provide externally allocated
(such as X-provided or DMA’able) memory to elements earlier in the pipeline, and
thereby prevent the need for nencpy () for incoming data. We do this by providing
a pad-allocate-buffer function.

static GtBuffer * gst_ny sink buffer_allocate (GtPad *pad,
guinté4 offset,
gui nt si ze);
static void
gst_ny sink_init (Gt WS nk *si nk)
{
[.-] . . _
gst_pad set_bufferall oc_function ('si nk->si nkpad,
gst_ny sink buffer_allocate);
}
static void
gst_ny sink buffer_free (GtBuffer *huf)
GtMSnk *sink = GG WIN (G _BAHER PR \VATE (buf));

/* Db whatever is needed here. */
[--]
102

Chapter 22. Writing a Sink

}

static GtBuffer *

gst_ny sink buffer_allocate (GtPad *pad,
guinté4 offset,
gui nt si ze)

Gt Buffer *buf = gst_buffer_new 0O;

/[* S here it'’s up to you to wap your private buffers and
* return that. */

GBI BLUHER FREE DATA RNC (buf) = gst_ny sink buffer_free;
GST_BUAFER PR VATE (buf) = sink;
GST_BUFER ALAG T (buf, CST_BUFER DONTHRER);
[.-]
return buf;

}

103

Chapter 22. Writing a Sink

104

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

1-to-N elements don’t have much special needs or requirements that haven’t been
discussed already. The most important thing to take care of in 1-to-N elements (things
like tee -elements or so) is to use proper buffer refcounting and caps negotiation. If
those two are taken care of (see the tee element if you need example code), there’s
little that can go wrong.

Demuxers are the 1-to-N elements that need very special care, though. They are
responsible for timestamping raw, unparsed data into elementary video or audio
streams, and there are many things that you can optimize or do wrong. Here, sev-
eral culprits will be mentioned and common solutions will be offered. Parsers are
demuxers with only one source pad. Also, they only cut the stream into buffers, they
don’t touch the data otherwise.

Demuxer Caps Negotiation

Demuxers will usually contain several elementary streams, and each of those
streams’ properties will be defined in a stream header at the start of the file (or,
rather, stream) that you're parsing. Since those are fixed and there is no possibility
to negotiate stream properties with elements earlier in the pipeline, you should
always use explicit caps on demuxer source pads. This prevents a whole lot of caps
negotiation or re-negotiation errors.

Data processing and downstream events

Data parsing, pulling this into subbuffers and sending that to the source pads of the
elementary streams is the one single most important task of demuxers and parsers.
Usually, an element will have a _loop () function using the bytestream object to
read data. Try to have a single point of data reading from the bytestream object. In this
single point, do proper event handling (in case there is any) and proper error handling
in case that’s needed. Make your element as fault-tolerant as possible, but do not go
further than possible.

Parsing versus interpreting

One particular convention that Gireaner ~ demuxers follow is that of separation of
parsing and interpreting. The reason for this is maintainability, clarity and code reuse.
An easy example of this is something like RIFF, which has a chunk header of 4 bytes,
then a length indicator of 4 bytes and then the actual data. We write special func-
tions to read one chunk, to peek a chunk ID and all those; that’s the parsing part of
the demuxer. Then, somewhere else, we like to write the main data processing func-
tion, which calls this parse function, reads one chunk and then does with the data
whatever it needs to do.

Some example code for RIFF-reading to illustrate the above two points:

static ghool ean

gst _ny_demuxer _peek (Gt MyDenuxer *denux,
gui nt 32 *jd,
gui nt 32 *si ze)
{
guint8 *data;
vhile (gst_bytestreampeek bytes (denux- >bs, &ata, 4) '= 4 {

guint32 renaining;
Gt Bvent *event;

gst_bytestreamget _status (denux- >bs, & enai ni ng, &event);
105

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

if (event) ({
Gst Bvent Type type = GST_BVENT_TYFE (event);

/[* or naybe custom event handing, up to you - we lose referencel

gst_pad event _defaul t (denux- >si nkpad, event);
if (type = GBI _BVENT_E®»
retun FASE
} else {
GST_HBVENT_ HRROR (demux, STFREAM READ (NUL), (NLL));
return FALSE

}
}

*id = GINB2_ FRMLE (((uint32 *) data)[0]);
*size = GJNI32_ ARMLE (((guint32 *) data)[0]);

return TRE
}

static wvoid
gst _ny_denuxer_| oop (Gt H enent *el enent)

Gst MyDenuixer *demux = GBT_MW _[EMUXER (el ement);
uint32 id, size

if (!gst_ny denuxer_peek (demx, & d, &ize))
return;

swtch (id) {
[.. norma chunk handling ..]

}

}

Reason for this is that event handling is now centralized in one place and the _| oop
() function is a lot cleaner and more readable. Those are common code practices, but
since the mistake of not using such common code practices has been made too often,
we explicitely mention this here.

Simple seeking and indexes

106

Sources will generally receive a seek event in the exact supported format by the el-
ement. Demuxers, however, can not seek in themselves directly, but need to convert
from one unit (e.g. time) to the other (e.g. bytes) and send a new event to its sink
pad. Given this, the _convert () -function (or, more general: unit conversion) is the
most important function in a demuxer. Some demuxers (AVI, Matroska) and parsers
will keep an index of all chunks in a stream, firstly to improve seeking precision and
secondly so they won't lose sync. Some other demuxers will seek the stream directly
without index (e.g. MPEG, Ogg) - usually based on something like a cumulative bi-
trate - and then find the closest next chunk from their new position. The best choice
depends on the format.

Note that it is recommended for demuxers to implement event, conversion and query
handling functions (using time units or so), in addition to the ones (usually in byte
units) provided by the pipeline source element.

*/

Chapter 24. Writing a N-to-1 Element or Muxer

N-to-1 elements have been previously mentioned and discussed in both Chapter 14
and in Chapter 12. The main noteworthy thing about N-to-1 elements is that they
should always, without any single exception, be loop () -based. Apart from that,
there is not much general that you need to know. We will discuss one special type
of N-to-1 elements here, these being muxers. The first two of these sections apply to
N-to-1 elements in general, though.

The Data Loop Function

Events

As previously mentioned in Chapter 12, N-to-1 elements generally try to have one
buffer from each sink pad and then handle the one with the earliest timestamp.
There’s some exceptions to this rule, we will come to those later. This only works
if all streams actually continuously provide input. There might be cases where this
is not true, for example subtitles (there might be no subtitle for a while), overlay im-
ages and so forth. For this purpose, there isa _select () function in GBreaner .It
checks whether input is available on a (list of) pad(s). In this way, you can skip over
the pads that are 'non- continuous’.

/* Pad selection is currently broken, HXME sone day */

in the Loop Function

N-to-1 elements using a cache will sometimes receive events, and it is often unclear
how to handle those. For example, how do you seek to a frame in an output file (and
what’s the point of it anyway)? So, do discontinuity or seek events make sense, and
should you use them?

Discontinuities and flushes

Don’t do anything. They specify a discontinuity in the output, and you should con-
tinue to playback as you would otherwise. You generally do not need to put a discon-
tinuity in the output stream in muxers; you would have to manually start adapting
timestamps of output frames (if appliccable) to match the previous timescale, though.
Note that the output data stream should be continuous. For other types of N-to-1-
elements, it is generally fine to forward the discontinuity once it has been received
from all pads. This depends on the specific element.

Seeks

Depends on the element. Muxers would generally not implement this, because the
concept of seeking in an output stream at frame level is not very useful. Seeking at
byte level can be useful, but that is more generally done by muxers on sink elements.

End-of-Stream
Speaks for itself.

107

Chapter 24. Writing a N-to-1 Element or Muxer

Negotiation

108

Most container formats will have a fair amount of issues with changing content on an
elementary stream. Therefore, you should not allow caps to be changed once you've
started using data from them. The easiest way to achieve this is by using explicit caps,
which have been explained before. However, we're going to use them in a slightly
different way then what you're used to, having the core do all the work for us.

The idea is that, as long as the stream/file headers have not been written yet and no
data has been processed yet, a stream is allowed to renegotiate. After that point, the
caps should be fixed, because we can only use a stream once. Caps may then only
change within an allowed range (think MPEG, where changes in FPS are allowed),
or sometimes not at all (such as AVI audio). In order to do that, we will, after data
retrieval and header writing, set an explicit caps on each sink pad, that is the minimal
caps describing the properties of the format that may not change. As an example,
for MPEG audio inside an MPEG system stream, this would mean a wide caps of
audio/mpeg with mpegversion=1 and layer=[1,2]. For the same audio type in MPEG,
though, the samplerate, bitrate, layer and number of channels would become static,
too. Since the (request) pads will be removed when the stream ends, the static caps
will cease to exist too, then. While the explicit caps exist, the _link () - function
will not be called, since the core will do all necessary checks for us. Note that the
property of using explicit caps should be added along with the actual explicit caps,
not any earlier.

Below here follows the simple example of an AVI muxer’s audio caps negotiation.
The _link () -function is fairly normal, but the -Loop () -function does some of the
tricks mentioned above. There is no _getcaps () - function since the pad template
contains all that information already (not shown).

static Gt Padli nkReturn

gst_avi_nux_audi o | i nk (Gt Pad *pad,
const GtGps *caps)

{
GtAiMx *nix = GILAM_MX (gst_pad _get_parent (pad));
GtSructure *str = gst_caps get_structure (caps, 0);
const gchar *mine = gst_structure get_nane (str);

if (!strenp (str, "audio/ npeg")) {
/* get version, nake sure it's 1, get layer, nake sure it's 1-3
* then create the 2-byte audio tag (O0x0055) and fill an audio
* stream structure (strh/strf). */
(-]
return G PAD LINK (K
} else if l!strcnp (str, “audio/x-rawint"))
/[* Se above, but now with the raw audio tag (0x0001). */
(-]
return GBT_PAD LINK K

} ese [..]
[--]
}
static void
gst_avi _nux_| oop (GstH enent *el enent)

GtAiMx *nmix = GTILAM_MX (el enent);
[..]

/* Ps we get here, we shoud have witten the header if we hadn't done
* that before yet, and we're supposed to have an interna buffer from

* each pad, aso from the audio one. S here, we check again whether
* this is the first run and if so, we set static «caps. */

if (nmux->first_cycle) {
const @ist “*padlist = gst_elenent_get _pad |ist (el enent) ;
Aist *item
for (item = padist; item !'= NLL;, item = item>next) {

Gt Pad
Gst Gaps

if (1GST PADIS SNK
conti nue;

*pad
*caps;

/* set static
if (!strncnp
/* the strf
swtch (strf->fornat)

case Ox0055: /* np3
= gst_caps_new sinpl e

caps
" npegver si on",

"l ayer",
"hitrate",
"rate",

"channel s",
NLL);

GTYPEINT,
GTYFEINT,
GTYFEINT,
GTYFEINT,
GTYFEINT,

br eak;
case (0x0001: /*
caps
[..D);

br eak;
[--]

} else if
[..]

} else {
g_varni ng
conti nue;

}

/[* set static caps */
gst_pad use explicit_caps
gst_pad set_explicit_caps

(!strncnp

("a!");

}
}

o

/* Next runs wll never
nux- >first_cycle = FALSE
}

[

= item>data;

caps here

(gst_pad_get_nane
is the struct

(gst_pad _get _nane

be the first

Chapter 24. Writing a N-to-1 Element or Muxer

(pad))

*/
(pad),
you filled

"audi o ", 6)) {

in the _link () function.
{

*/

("aud of npeg”,

3

strf->av_bps,

strf->rate,

strf->channel s,

pcm */
= gst_caps_new sinpl e

("audi of x-rawint",

(pad), "video ", 6)) {

(pad);
(pad, caps);

agan */

Note that there are other ways to achieve that, which might be useful for more com-
plex cases. This will do for the simple cases, though. This method is provided to
simplify negotiation and renegotiation in muxers, it is not a complete solution, nor is

it a pretty one.

Markup vs. data processing

As we noted on demuxers before, we love common programming paradigms such
as clean, lean and mean code. To achieve that in muxers, it’s generally a good idea to
separate the actual data stream markup from the data processing. To illustrate, here’s
how AVI muxers should write out RIFF tag chunks:

static wvoid
gst_avi_mux_wite_chunk (Gt Avi Mix *nuix,
gui nt 32 id,
Gt Buffer *dat a)
Gt Buf fer *hdr;
hdr = gst_buffer_newand all oc (8);
((quint32 *) GBT_BAERDATA (buf))[0] = GINI32_TOLE (id);

109

*/

Chapter 24. Writing a N-to-1 Element or Muxer

110

((guint32 *) GBT_BUAER DATA (buf))[1] = GJINI32_TOLE
gst_pad push (nux- >sr cpad, hdr);
gst_pad push (mux- >sr cpad, data);
static void
gst_avi _nux_| oop (Gt H enent *el enent)
GtAiMx *nix = GILAM_MX (el enent);
Gt Buf fer *buf ;
(-]
buf = gst_pad pul | (nux->si nkpad[0]) ;
[.-]
gst_avi_nmux_wite chunk (GBT_MKE FOLRC (o,’0,'d,'b),

}

(GST BFFERR S ZE

buf);

In general, try to program clean code, that should cover pretty much everything.

(data));

Chapter 25. Writing a N-to-N element

FIXME: write.

111

Chapter 25. Writing a N-to-N element

112

Chapter 26. Writing an Autoplugger

FIXME: write.

113

Chapter 26. Writing an Autoplugger

114

Chapter 27. Writing a Manager

Managers are elements that add a function or unify the function of another (series
of) element(s). Managers are generally a GtBn with one or more ghostpads. Inside
them is/are the actual element(s) that matters. There is several cases where this is
useful. For example:

» To add support for private events with custom event handling to another element.

» To add support for custom pad _query () or _convert () handling to another
element.

¢ To add custom data handling before or after another element’s data handler func-
tion (generally its _chain () function).

This chapter will explain the setup of managers. As a specific example, we will try to
add EOS event support to source elements. This can be used to finish capturing an
audio stream to a file. Source elements normally don’t do any EOS handling at all, so
a manager is perfect to extend those element’s functionalities.

Specifically, this element will contain two child elements: the actual source element
and a “helper element” that implement an event handler on its source pad. This event
handler will respond to EOS events by storing them internally and returning the
event (rather than data) on the next call to the get () function. After that, it will
go into EOS and set the parent (and thereby the contained source element) to EOS as
well. Other events will be forwarded to the source element, which will handle them
as usual.

115

Chapter 27. Writing a Manager

116

Chapter 28. Things to check when writing an element

This chapter contains a fairly random selection of things to take care of when writing
an element. It’s up to you how far you're going to stick to those guidelines. However,
keep in mind that when you’re writing an element and hope for it to be included in
the mainstream G&reaner distribution, it has to meet those requirements. As far as

possible, we will try to explain why those requirements are set.

About states

» Make sure the state of an element gets reset when going to NLLL . Ideally, this should
set all object properties to their original state. This function should also be called
from _init.

» Make sure an element forgets everything about its contained stream when going
from PALED to READY . In READY , all stream states are reset. An element that goes
from PABD to READY and back to PABED should start reading the stream from he
start again.

» People that use gst-launch for testing have the tendency to not care about cleaning
up. This is wrong. An element should be tested using various applications, where
testing not only means to “make sure it doesn’t crash”, but also to test for memory
leaks using tools such as valgrind. Elements have to be reusable in a pipeline after
having been reset.

Debugging

+ Elements should never use their standard output for debugging (using functions
suchasprintf () orgprint ()).Instead, elements should use the logging func-
tions provided by GBreaner ,named G DEBG () ,GILINO () ,&BLINO (),
GIWRNNG () and GT BRR () . The various logging levels can be turned on
and off at runtime and can thus be used for solving issues as they turn up.

+ Ideally, elements should use their own debugging category. Most elements use the
following code to do that:

GST_DEBUG CATEHIRY_STATI C (nyel enent _debug) ;
#define GBT_CAT [HALLT nyel enent _debug

(-]

static wvoid
gst_nyelenent_class init (Gt el enent @ ass *Kkl ass)

(-]
GST_ DBUG CATEARY INT (nyel enent _debug, "nyel enent ",
0, "M own elenent");

}

At runtime, you can turn on debugging using the commandline
--gst-debug=myelement:5.

117

Chapter 28. Things to check when writing an element

Querying, events and the like

» All elements to which it applies (sources, sinks, demuxers) should implement

query functions on their pads, so that applications and neighbour elements can
request the current position, the stream length (if known) and so on.

All elements that are event-aware (their GST_H BEMENT_EVENT AMRE flag is set)
should implement event handling for all events, either specifically or using
gst_pad event_defaul t () . Elements that you should handle specifically are
the interrupt event, in order to properly bail out as soon as possible if state is
changed. Events may never be dropped unless specifically intended.

Loop-based elements should always implement event handling, in order to pre-
vent hangs (infinite loop) on state changes.

Testing your element

118

gst-launch is not a good tool to show that your element is finished. Applications
such as Rhythmbox and Totem (for GNOME) or AmaroK (for KDE) are. gst-launch
will not test various things such as proper clean-up on reset, interrupt event han-
dling, querying and so on.

Parsers and demuxers should make sure to check their input. Input cannot be
trusted. Prevent possible buffer overflows and the like. Feel free to error out on
unrecoverable stream errors. Test your demuxer using stream corruption elements
such as breaknydata (included in gst-plugins). It will randomly insert, delete and
modify bytes in a stream, and is therefore a good test for robustness. If your ele-
ment crashes when adding this element, your element needs fixing. If it errors out
properly, it’s good enough. Ideally, it'd just continue to work and forward data as
much as possible.

Demuxers should not assume that seeking works. Be prepared to work with un-
seekable input streams (e.g. network sources) as well.

Sources and sinks should be prepared to be assigned another clock then the one
they expose themselves. Always use the provided clock for synchronization, else
you'll get A/V sync issues.

	GStreamer Plugin Writer's Guide (0.8.7.3)
	Table of Contents
	Chapter 1. Preface
	Who Should Read This Guide?
	Preliminary Reading
	Structure of This Guide

	Chapter 2. Basic Concepts
	Elements and Plugins
	Pads
	Data, Buffers and Events
	Buffer Allocation

	Mimetypes and Properties
	The Basic Types

	Chapter 3. Constructing the Boilerplate
	Getting the GStreamer Plugin Templates
	!!! FIXME !!! Using the Project Stamp
	Examining the Basic Code
	GstElementDetails
	GstStaticPadTemplate
	Constructor Functions
	The plugininit function

	Chapter 4. Specifying the pads
	The link function
	The getcaps function
	Explicit caps

	Chapter 5. The chain function
	Chapter 6. What are states?
	Managing filter state

	Chapter 7. Adding Arguments
	Chapter 8. Signals
	Chapter 9. Building a Test Application
	Chapter 10. Creating a Filter with a Filter Factory
	Chapter 11. How scheduling works
	The Basic Scheduler
	The Optimal Scheduler

	Chapter 12. How a loopfunc works
	MultiInput Elements
	The Bytestream Object
	Adding a second output
	Modifying the test application

	Chapter 13. Types and Properties
	Building a Simple Format for Testing
	Typefind Functions and Autoplugging
	List of Defined Types

	Chapter 14. Request and Sometimes pads
	Sometimes pads
	Request pads

	Chapter 15. Clocking
	Types of time
	Clocks
	Flow of data between elements and time
	Obligations of each element.
	Source elements
	Sink elements

	Chapter 16. Supporting Dynamic Parameters
	Comparing Dynamic Parameters with GObject Properties
	Getting Started
	Defining Parameter Specifications
	Direct Method
	Callback Method
	Array Method

	The Data Processing Loop
	DParam Manager Modes
	Dynamic Parameters for Video

	Chapter 17. MIDI
	Chapter 18. Interfaces
	How to Implement Interfaces
	Mixer Interface
	Tuner Interface
	Color Balance Interface
	Property Probe Interface
	X Overlay Interface
	Navigation Interface

	Chapter 19. Tagging (Metadata and Streaminfo)
	Reading Tags from Streams
	Writing Tags to Streams

	Chapter 20. Events: Seeking, Navigation and More
	Downstream events
	Upstream events
	All Events Together
	End of Stream (EOS)
	Flush
	Stream Discontinuity
	Seek Request
	Stream Filler
	Interruption
	Navigation
	Tag (metadata)

	Chapter 21. Writing a Source
	The get()function
	Events, querying and converting
	Time, clocking and synchronization
	Using special memory

	Chapter 22. Writing a Sink
	Data processing, events, synchronization and clocks
	Special memory

	Chapter 23. Writing a 1toN Element, Demuxer or Parser
	Demuxer Caps Negotiation
	Data processing and downstream events
	Parsing versus interpreting
	Simple seeking and indexes

	Chapter 24. Writing a Nto1 Element or Muxer
	The Data Loop Function
	Events in the Loop Function
	Discontinuities and flushes
	Seeks
	EndofStream

	Negotiation
	Markup vs. data processing

	Chapter 25. Writing a NtoN element
	Chapter 26. Writing an Autoplugger
	Chapter 27. Writing a Manager
	Chapter 28. Things to check when writing an element
	About states
	Debugging
	Querying, events and the like
	Testing your element

