
GStreamer Application Development Manual (0.8.7.3)

Wim Taymans

Steve Baker

Andy Wingo

Ronald S. Bultje

GStreamer Application Development Manual (0.8.7.3)
by Wim Taymans, Steve Baker, Andy Wingo, and Ronald S. Bultje

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http://www.opencontent.org/opl.shtml1).

Table of Contents
I. Overview...1

1. Introduction ..1
What is GStreamer ? ...1
Structure of this Manual ..1

2. Motivation & Goals..3
Current problems..3
The design goals ...4

3. Foundations ..7
Elements...7
Bins and pipelines...7
Pads...7

II. Basic Concepts..9
4. Initializing GStreamer ...9

Simple initialization ...9
The popt interface...9

5. Elements ..11
What are elements? ..11
Creating a GstElement ..12
Using an element as a GObject ..14
More about element factories..15
Linking elements ..16
Element States ...17

6. Bins ... 19
What are bins...19
Creating a bin ..19
Custom bins...20

7. Pads and capabilities ...23
Pads...23
Capabilities of a pad...25
What capabilities are used for...26
Ghost pads ...28

8. Buffers and Events ...31
Buffers ..31
Events ...31

9. Your first application ...33
Hello world..33
Compiling and Running helloworld.c...35
Conclusion ...35

III. Advanced GStreamer concepts ..37
10. Position tracking and seeking ..37

Querying: getting the position or length of a stream37
Events: seeking (and more) ...38

11. Metadata..39
Stream information...39
Tag reading ..39
Tag writing...39

12. Interfaces..41
The Mixer interface...41
The Tuner interface...41
The Color Balance interface...41
The Property Probe interface ..41
The X Overlay interface ...42

13. Clocks in GStreamer ..43
14. Dynamic Parameters..45

Getting Started ..45
Creating and Attaching Dynamic Parameters ...45
Changing Dynamic Parameter Values...46

iii

Different Types of Dynamic Parameter ...46
15. Threads ..49

When would you want to use a thread? ...49
Constraints placed on the pipeline by the GstThread.................................50
A threaded example application ..50

16. Scheduling...53
Managing elements and data throughput ..53

17. Autoplugging..55
MIME-types as a way to identity streams...55
Media stream type detection...56
Plugging together dynamic pipelines..58

IV. Higher-level interfaces for GStreamer applications..63
18. Components ..63

Playbin..63
Decodebin ..64
Spider ...66
GstPlay ...66
GstEditor ..66

19. XML in GStreamer ...67
Turning GstElements into XML..67
Loading a GstElement from an XML file ..68
Adding custom XML tags into the core XML data......................................69

V. Appendices ...71
20. Debugging ...71

Command line options ..71
Adding debugging to a plugin ...71

21. Programs..73
gst-register...73
gst-launch ..73
gst-inspect ...75

22. GNOME integration ..77
Command line options ..77

23. Windows support...79
Building GStreamer under Win32 ...79
Installation on the system..79

24. Quotes from the Developers...81

iv

Chapter 1. Introduction

This chapter gives you an overview of the technologies described in this book.

What is GStreamer ?
GStreamer is a framework for creating streaming media applications. The funda-
mental design comes from the video pipeline at Oregon Graduate Institute, as well
as some ideas from DirectShow.
GStreamer ’s development framework makes it possible to write any type of stream-
ing multimedia application. The GStreamer framework is designed to make it easy to
write applications that handle audio or video or both. It isn’t restricted to audio and
video, and can process any kind of data flow. The pipeline design is made to have
little overhead above what the applied filters induce. This makes GStreamer a good
framework for designing even high-end audio applications which put high demands
on latency.
One of the the most obvious uses of GStreamer is using it to build a media player.
GStreamer already includes components for building a media player that can sup-
port a very wide variety of formats, including MP3, Ogg/Vorbis, MPEG-1/2, AVI,
Quicktime, mod, and more. GStreamer , however, is much more than just another
media player. Its main advantages are that the pluggable components can be mixed
and matched into arbitrary pipelines so that it’s possible to write a full-fledged video
or audio editing application.
The framework is based on plugins that will provide the various codec and other
functionality. The plugins can be linked and arranged in a pipeline. This pipeline
defines the flow of the data. Pipelines can also be edited with a GUI editor and saved
as XML so that pipeline libraries can be made with a minimum of effort.
The GStreamer core function is to provide a framework for plugins, data flow and
media type handling/negotiation. It also provides an API to write applications using
the various plugins.

Structure of this Manual
This book is about GStreamer from a developer’s point of view; it describes how
to write a GStreamer application using the GStreamer libraries and tools. For an
explanation about writing plugins, we suggest the Plugin Writers Guide1.
Part I in GStreamer Application Development Manual (0.8.7.3) gives you an overview
of GStreamer ’s motivation design goals.
Part II in GStreamer Application Development Manual (0.8.7.3) rapidly covers the ba-
sics of GStreamer application programming. At the end of that chapter, you should
be able to build your own audio player using GStreamer

In Part III in GStreamer Application Development Manual (0.8.7.3), we will move on to
complicated subjects which make GStreamer stand out of its competitors. We will
discuss application-pipeline interaction using dynamic parameters and interfaces,
we will discuss threading and threaded pipelines, scheduling and clocks (and syn-
chronization). Most of those topics are not just there to introduce you to their API,
but primarily to give a deeper insight in solving application programming problems
with GStreamer and understanding their concepts.
Next, in Part IV in GStreamer Application Development Manual (0.8.7.3), we will
go into higher-level programming APIs for GStreamer . You don’t exactly need to
know all the details from the previous parts to understand this, but you will need
to understand basic GStreamer concepts nevertheless. We will, amongst others,
discuss XML, playbin and autopluggers.

1

Chapter 1. Introduction

In Part V in GStreamer Application Development Manual (0.8.7.3), you will find some
random information on integrating with GNOME, KDE, OS X or Windows, some
debugging help and general tips to improve and simplify GStreamer programming.
In order to understand this manual, you will need to have a basic understanding of
the C language. Since GStreamer uses GLib 2.02, the reader is assumed to understand
the basics of the GObject object model3. It is recommended to have skimmed through
the introduction of the GObject tutorial4 before reading this. You may also want to
have a look at Eric Harlow’s book Developing Linux Applications with GTK+ and GDK.

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html
2. http://developer.gnome.org/arch/gtk/glib.html
3. http://developer.gnome.org/doc/API/2.0/gobject/index.html
4. http://www.le-hacker.org/papers/gobject/index.html

2

Chapter 2. Motivation & Goals

Linux has historically lagged behind other operating systems in the multimedia
arena. Microsoft’s Windows™ and Apple’s MacOS™ both have strong support
for multimedia devices, multimedia content creation, playback, and realtime
processing. Linux, on the other hand, has a poorly integrated collection of
multimedia utilities and applications available, which can hardly compete with the
professional level of software available for MS Windows and MacOS.
GStreamer was designed to provide a solution to the current Linux media problems.

Current problems
We describe the typical problems in today’s media handling on Linux.

Multitude of duplicate code
The Linux user who wishes to hear a sound file must hunt through their collection of
sound file players in order to play the tens of sound file formats in wide use today.
Most of these players basically reimplement the same code over and over again.
The Linux developer who wishes to embed a video clip in their application must
use crude hacks to run an external video player. There is no library available that a
developer can use to create a custom media player.

’One goal’ media players/libraries
Your typical MPEG player was designed to play MPEG video and audio. Most of
these players have implemented a complete infrastructure focused on achieving their
only goal: playback. No provisions were made to add filters or special effects to the
video or audio data.
If you want to convert an MPEG-2 video stream into an AVI file, your best option
would be to take all of the MPEG-2 decoding algorithms out of the player and du-
plicate them into your own AVI encoder. These algorithms cannot easily be shared
across applications.
Attempts have been made to create libraries for handling various media types. Be-
cause they focus on a very specific media type (avifile, libmpeg2, ...), significant work
is needed to integrate them due to a lack of a common API. GStreamer allows you to
wrap these libraries with a common API, which significantly simplifies integration
and reuse.

Non unified plugin mechanisms
Your typical media player might have a plugin for different media types. Two media
players will typically implement their own plugin mechanism so that the codecs can-
not be easily exchanged. The plugin system of the typical media player is also very
tailored to the specific needs of the application.
The lack of a unified plugin mechanism also seriously hinders the creation of bi-
nary only codecs. No company is willing to port their code to all the different plugin
mechanisms.
While GStreamer also uses it own plugin system it offers a very rich framework for
the plugin developer and ensures the plugin can be used in a wide range of applica-
tions, transparently interacting with other plugins. The framework that GStreamer
provides for the plugins is flexible enough to host even the most demanding plugins.

3

Chapter 2. Motivation & Goals

Poor user experience
Because of the problems mentioned above, application authors have so far often been
urged to spend a considerable amount of time in writing their own backends, plu-
gin mechanisms and so on. The result has often been, unfortunately, that both the
backend as well as the user interface were only half-finished. Demotivated, the ap-
plication authors would start rewriting the whole thing and complete the circle. This
leads to a poor end user experience.

Provision for network transparency
No infrastructure is present to allow network transparent media handling. A dis-
tributed MPEG encoder will typically duplicate the same encoder algorithms found
in a non-distributed encoder.
No provisions have been made for technologies such as the GNOME object embed-
ding using Bonobo1.
The GStreamer core does not use network transparent technologies at the lowest
level as it only adds overhead for the local case. That said, it shouldn’t be hard to
create a wrapper around the core components. There are tcp plugins now that imple-
ment a GStreamer Data Protocol that allows pipelines to be slit over TCP. These are
located in the gst-plugins module directory gst/tcp.

Catch up with the Windows™ world
We need solid media handling if we want to see Linux succeed on the desktop.
We must clear the road for commercially backed codecs and multimedia applications
so that Linux can become an option for doing multimedia.

The design goals
We describe what we try to achieve with GStreamer .

Clean and powerful
GStreamer wants to provide a clean interface to:

• The application programmer who wants to build a media pipeline. The program-
mer can use an extensive set of powerful tools to create media pipelines without
writing a single line of code. Performing complex media manipulations becomes
very easy.

• The plugin programmer. Plugin programmers are provided a clean and simple API
to create self-contained plugins. An extensive debugging and tracing mechanism
has been integrated. GStreamer also comes with an extensive set of real-life plugins
that serve as examples too.

Object oriented
GStreamer adheres to the GLib 2.0 object model. A programmer familiar with GLib
2.0 or older versions of GTK+ will be comfortable with GStreamer .
GStreamer uses the mechanism of signals and object properties.
All objects can be queried at runtime for their various properties and capabilities.

4

Chapter 2. Motivation & Goals

GStreamer intends to be similar in programming methodology to GTK+. This applies
to the object model, ownership of objects, reference counting, ...

Extensible
All GStreamer Objects can be extended using the GObject inheritance methods.
All plugins are loaded dynamically and can be extended and upgraded indepen-
dently.

Allow binary only plugins
Plugins are shared libraries that are loaded at runtime. Since all the properties of the
plugin can be set using the GObject properties, there is no need (and in fact no way)
to have any header files installed for the plugins.
Special care has been taken to make plugins completely self-contained. All relevant
aspects of plugins can be queried at run-time.

High performance
High performance is obtained by:

• using GLib’s g_mem_chunk and fast non-blocking allocation algorithms where pos-
sible to minimize dynamic memory allocation.

• extremely light-weight links between plugins. Data can travel the pipeline with
minimal overhead. Data passing between plugins only involves a pointer derefer-
ence in a typical pipeline.

• providing a mechanism to directly work on the target memory. A plugin can for
example directly write to the X server’s shared memory space. Buffers can also
point to arbitrary memory, such as a sound card’s internal hardware buffer.

• refcounting and copy on write minimize usage of memcpy. Sub-buffers efficiently
split buffers into manageable pieces.

• the use of cothreads to minimize the threading overhead. Cothreads are a simple
and fast user-space method for switching between subtasks. Cothreads were mea-
sured to consume as little as 600 cpu cycles.

• allowing hardware acceleration by using specialized plugins.
• using a plugin registry with the specifications of the plugins so that the plugin

loading can be delayed until the plugin is actually used.
• all critical data passing is free of locks and mutexes.

Clean core/plugins separation
The core of GStreamer is essentially media-agnostic. It only knows about bytes and
blocks, and only contains basic elements. The core of GStreamer is functional enough
to even implement low-level system tools, like cp.
All of the media handling functionality is provided by plugins external to the core.
These tell the core how to handle specific types of media.

5

Chapter 2. Motivation & Goals

Provide a framework for codec experimentation
GStreamer also wants to be an easy framework where codec developers can experi-
ment with different algorithms, speeding up the development of open and free mul-
timedia codecs like Theora and Vorbis2.

Notes
1. http://developer.gnome.org/arch/component/bonobo.html
2. http://www.xiph.org/ogg/index.html

6

Chapter 3. Foundations

This chapter of the guide introduces the basic concepts of GStreamer . Understanding
these concepts will be important in reading any of the rest of this guide, all of them
assume understanding of these basic concepts.

Elements
An element is the most important class of objects in GStreamer . You will usually create
a chain of elements linked together and let data flow through this chain of elements.
An element has one specific function, which can be the reading of data from a file,
decoding of this data or outputting this data to your sound card (or anything else).
By chaining together several such elements, you create a pipeline that can do a specific
task, for example media playback or capture. GStreamer ships with a large collection
of elements by default, making the development of a large variety of media applica-
tions possible. If needed, you can also write new elements. That topic is explained in
great deal in the Plugin Writer’s Guide.

Bins and pipelines
A bin is a container for a collection of elements. A pipeline is a special subtype of
a bin that allows execution of all of its contained child elements. Since bins are sub-
classes of elements themselves, you can mostly control a bin as if it where an element,
thereby abstracting away a lot of complexity for your application. You can, for exam-
ple change state on all elements in a bin by changing the state of that bin itself. Bins
also forward some signals from their contained childs (such as errors and tags).
A pipeline is a bin that allows to run (technically referred to as “iterating”) its con-
tained childs. By iterating a pipeline, data flow will start and media processing will
take place. A pipeline requires iterating for anything to happen. you can also use
threads, which automatically iterate the contained childs in a newly created threads.
We will go into this in detail later on.

Pads
Pads are used to negotiate links and data flow between elements in GStreamer . A pad
can be viewed as a “plug” or “port” on an element where links may be made with
other elements, and through which data can flow to or from those elements. Pads
have specific data handling capabilities: A pad can restrict the type of data that flows
through it. Links are only allowed between two pads when the allowed data types of
the two pads are compatible. Data types are negotiated between pads using a process
called caps negotiation. Data types are described as a GstCaps .
An analogy may be helpful here. A pad is similar to a plug or jack on a physical
device. Consider, for example, a home theater system consisting of an amplifier, a
DVD player, and a (silent) video projector. Linking the DVD player to the amplifier is
allowed because both devices have audio jacks, and linking the projector to the DVD
player is allowed because both devices have compatible video jacks. Links between
the projector and the amplifier may not be made because the projector and amplifier
have different types of jacks. Pads in GStreamer serve the same purpose as the jacks
in the home theater system.
For the most part, all data in GStreamer flows one way through a link between ele-
ments. Data flows out of one element through one or more source pads, and elements
accept incoming data through one or more sink pads. Source and sink elements have
only source and sink pads, respectively. Data is embodied in a GstData structure.

7

Chapter 3. Foundations

8

Chapter 4. Initializing GStreamer

When writing a GStreamer application, you can simply include gst/gst.h to get
access to the library functions. Besides that, you will also need to intialize the
GStreamer library.

Simple initialization
Before the GStreamer libraries can be used, gst_init has to be called from the main
application. This call will perform the necessary initialization of the library as well as
parse the GStreamer -specific command line options.
A typical program 1 would have code to initialize GStreamer that looks like this:

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
guint major, minor, micro;

gst_init (&argc, &argv);

gst_version (&major, &minor, µ);
printf ("This program is linked against GStreamer %d.%d.%d\n",

major, minor, micro);

return 0;
}

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and
GST_VERSION_MICRO macros to get the GStreamer version you are building
against, or use the function gst_version to get the version your application is
linked against. GStreamer currently uses a scheme where versions with the same
major and minor versions are API-/ and ABI-compatible.
It is also possible to call the gst_init function with two NULL arguments, in which
case no command line options will be parsed by GStreamer .

The popt interface
You can also use a popt table to initialize your own parameters as shown in the next
example:

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
gboolean silent = FALSE;
gchar *savefile = NULL;
struct poptOption options[] = {

{"silent", ’s’, POPT_ARG_NONE|POPT_ARGFLAG_STRIP, &silent, 0,
"do not output status information", NULL},

{"output", ’o’, POPT_ARG_STRING|POPT_ARGFLAG_STRIP, &savefile, 0,
"save xml representation of pipeline to FILE and exit", "FILE"},

9

Chapter 4. Initializing GStreamer

POPT_TABLEEND
};

gst_init_with_popt_table (&argc, &argv, options);

printf ("Run me with --help to see the Application options appended.\n");

return 0;
}

As shown in this fragment, you can use a popt2 table to define your
application-specific command line options, and pass this table to the function
gst_init_with_popt_table . Your application options will be parsed in addition to
the standard GStreamer options.

Notes
1. The code for this example is automatically extracted from the documentation and

built under examples/manual in the GStreamer tarball.
2. http://developer.gnome.org/doc/guides/popt/

10

Chapter 5. Elements

The most important object in GStreamer for the application programmer is the
GstElement 1 object. An element is the basic building block for a media pipeline. All
the different high-level components you will use are derived from GstElement .
Every decoder, encoder, demuxer, video or audio output is in fact a GstElement

What are elements?
For the application programmer, elements are best visualized as black boxes. On the
one end, you might put something in, the element does something with it and some-
thing else comes out at the other side. For a decoder element, ifor example, you’d
put in encoded data, and the element would output decoded data. In the next chap-
ter (see Pads and capabilities), you will learn more about data input and output in
elements, and how you can set that up in your application.

Source elements
Source elements generate data for use by a pipeline, for example reading from disk
or from a sound card. Figure 5-1 shows how we will visualise a source element. We
always draw a source pad to the right of the element.

src

source_element

Figure 5-1. Visualisation of a source element

Source elements do not accept data, they only generate data. You can see this in the
figure because it only has a source pad (on the right). A source pad can only generate
data.

Filters, convertors, demuxers, muxers and codecs
Filters and filter-like elements have both input and outputs pads. They operate on
data that they receive on their input (sink) pads, and will provide data on their output
(source) pads. Examples of such elements are a volume element (filter), a video scaler
(convertor), an Ogg demuxer or a Vorbis decoder.
Filter-like elements can have any number of source or sink pads. A video demuxer,
for example, would have one sink pad and several (1-N) source pads, one for each
elementary stream contained in the container format. Decoders, on the other hand,
will only have one source and sink pads.

11

Chapter 5. Elements

src

filter

sink

Figure 5-2. Visualisation of a filter element

Figure 5-2 shows how we will visualise a filter-like element. This specific element has
one source and one sink element. Sink pads, receiving input data, are depicted at the
left of the element; source pads are still on the right.

demuxer

sink

video

audio

Figure 5-3. Visualisation of a filter element with more than one output pad

Figure 5-3 shows another filter-like element, this one having more than one output
(source) pad. An example of one such element could, for example, be an Ogg de-
muxer for an Ogg stream containing both audio and video. One source pad will con-
tain the elementary video stream, another will contain the elementary audio stream.
Demuxers will generally fire signals when a new pad is created. The application pro-
grammer can then handle the new elementary stream in the signal handler.

Sink elements
Sink elements are end points in a media pipeline. They accept data but do not pro-
duce anything. Disk writing, soundcard playback, and video output would all be
implemented by sink elements. Figure 5-4 shows a sink element.

sink_element

sink

Figure 5-4. Visualisation of a sink element

12

Chapter 5. Elements

Creating a GstElement

The simplest way to create an element is to use gst_element_factory_make () 2.
This function takes a factory name and an element name for the newly created el-
ement. The name of the element is something you can use later on to look up the
element in a bin, for example. The name will also be used in debug output. You can
pass NULL as the name argument to get a unique, default name.
When you don’t need the element anymore, you need to unref it using
gst_object_unref () 3. This decreases the reference count for the element by 1.
An element has a refcount of 1 when it gets created. An element gets destroyed
completely when the refcount is decreased to 0.
The following example 4 shows how to create an element named source from the el-
ement factory named fakesrc. It checks if the creation succeeded. After checking, it
unrefs the element.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *element;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element */
element = gst_element_factory_make ("fakesrc", "source");
if (!element) {

g_print ("Failed to create element of type ’fakesrc’\n");
return -1;

}

gst_object_unref (GST_OBJECT (element));

return 0;
}

gst_element_factory_make is actually a shorthand for a combination of two func-
tions. A GstElement 5 object is created from a factory. To create the element, you have
to get access to a GstElementFactory 6 object using a unique factory name. This is
done with gst_element_factory_find () 7.
The following code fragment is used to get a factory that can be used to create the
fakesrc element, a fake data source. The function gst_element_factory_create () 8

will use the element factory to create an element with the given name.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElementFactory *factory;
GstElement * element;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element, method #2 */
factory = gst_element_factory_find ("fakesrc");
if (!factory) {

g_print ("Failed to find fctory of type ’fakesrc’\n");

13

Chapter 5. Elements

return -1;
}
element = gst_element_factory_create (factory, "source");
if (!element) {

g_print ("Failed to create element, even though it’s factory exists!\n");
return -1;

}

gst_object_unref (GST_OBJECT (element));

return 0;
}

Using an element as a GObject

A GstElement 9 can have several properties which are implemented using standard
GObject properties. The usual GObject methods to query, set and get property values
and GParamSpecs are therefore supported.
Every GstElement inherits at least one property from its parent GstObject :
the "name" property. This is the name you provide to the functions
gst_element_factory_make () or gst_element_factory_create () . You
can get and set this property using the functions gst_object_set_name and
gst_object_get_name or use the GObject property mechanism as shown below.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *element;
const gchar *name;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element */
element = gst_element_factory_make ("fakesrc", "source");

/* get name */
g_object_get (G_OBJECT (element), "name", &name, NULL);
g_print ("The name of the element is ’%s’.\n", name);

gst_object_unref (GST_OBJECT (element));

return 0;
}

Most plugins provide additional properties to provide more information about their
configuration or to configure the element. gst-inspect is a useful tool to query the
properties of a particular element, it will also use property introspection to give a
short explanation about the function of the property and about the parameter types
and ranges it supports. See the appendix for details about gst-inspect.
For more information about GObject properties we recommend you read the GOb-
ject manual10 and an introduction to The Glib Object system11.
A GstElement 12 also provides various GObject signals that can be used as a flexible
callback mechanism. Here, too, you can use gst-inspect to see which signals a specific

14

Chapter 5. Elements

elements supports. Together, signals and properties are the most basic way in which
elements and applications interact.

More about element factories
In the previous section, we briefly introduced the GstElementFactory 13 object al-
ready as a way to create instances of an element. Element factories, however, are
much more than just that. Element factories are the basic types retrieved from the
GStreamer registry, they describe all plugins and elements that GStreamer can cre-
ate. This means that element factories are useful for automated element instancing,
such as what autopluggers do, and for creating lists of available elements, such as
what pipeline editing applications (e.g. GStreamer Editor14) do.

Getting information about an element using a factory
Tools like gst-inspect will provide some generic information about an element,
such as the person that wrote the plugin, a descriptive name (and a shortname), a
rank and a category. The category can be used to get the type of the element
that can be created using this element factory. Examples of categories include
Codec/Decoder/Video (video decoder), Codec/Encoder/Video (video encoder),
Source/Video (a video generator), Sink/Video (a video output), and all these exist
for audio as well, of course. Then, there’s also Codec/Demuxer and Codec/Muxer
and a whole lot more. gst-inspect will give a list of all factories, and gst-inspect
<factory-name> will list all of the above information, and a lot more.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElementFactory *factory;

/* init GStreamer */
gst_init (&argc, &argv);

/* get factory */
factory = gst_element_factory_find ("sinesrc");
if (!factory) {

g_print ("You don’t have the ’sinesrc’ element installed, go get it!\n");
return -1;

}

/* display information */
g_print ("The ’%s’ element is a member of the category %s.\n"

"Description: %s\n",
gst_plugin_feature_get_name (GST_PLUGIN_FEATURE (factory)),
gst_element_factory_get_klass (factory),
gst_element_factory_get_description (factory));

return 0;
}

You can use gst_registry_pool_feature_list (GST_TYPE_ELEMENT_FACTORY) to
get a list of all the element factories that GStreamer knows about.

15

Chapter 5. Elements

Finding out what pads an element can contain
Perhaps the most powerful feature of element factories is that they contain a full
description of the pads that the element can generate, and the capabilities of those
pads (in layman words: what types of media can stream over those pads), without
actually having to load those plugins into memory. This can be used to provide a
codec selection list for encoders, or it can be used for autoplugging purposes for
media players. All current GStreamer -based media players and autopluggers work
this way. We’ll look closer at these features as we learn about GstPad and GstCaps in
the next chapter: Pads and capabilities

Linking elements
By linking a source element with zero or more filter-like elements and finally a sink
element, you set up a media pipeline. Data will flow through the elements. This is
the basic concept of media handling in GStreamer .

src sink sinksrc

filter sink_elementsource_element

Figure 5-5. Visualisation of three linked elements

By linking these three elements, we have created a very simple chain of elements.
The effect of this will be that the output of the source element (“element1”) will be
used as input for the filter-like element (“element2”). The filter-like element will do
something with the data and send the result to the final sink element (“element3”).
Imagine the above graph as a simple Ogg/Vorbis audio decoder. The source is a disk
source which reads the file from disc. The second element is a Ogg/Vorbis audio
decoder. The sink element is your soundcard, playing back the decoded audio data.
We will use this simple graph to construct an Ogg/Vorbis player later in this manual.
In code, the above graph is written like this:

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *source, *filter, *sink;

/* init */
gst_init (&argc, &argv);

/* create elements */
source = gst_element_factory_make ("fakesrc", "source");
filter = gst_element_factory_make ("identity", "filter");
sink = gst_element_factory_make ("fakesink", "sink");

/* link */
gst_element_link_many (source, filter, sink, NULL);

16

Chapter 5. Elements

[..]

}

For more specific behaviour, there are also the functions gst_element_link () and
gst_element_link_pads () . You can also obtain references to individual pads and
link those using various gst_pad_link_* () functions. See the API references for
more details.

Element States
After being created, an element will not actually perform any actions yet. You need
to change elements state to make it do something. GStreamer knows four element
states, each with a very specific meaning. Those four states are:

• GST_STATE_NULL : this is the default state. This state will deallocate all resources
held by the element.

• GST_STATE_READY : in the ready state, an element has allocated all of its global re-
sources, that is, resources that can be kept within streams. You can think about
opening devices, allocating buffers and so on. However, the stream is not opened
in this state, so the stream positions is automatically zero. If a stream was previ-
ously opened, it should be closed in this state, and position, properties and such
should be reset.

• GST_STATE_PAUSED : in this state, an element has opened the stream, but is not ac-
tively processing it. An element should not modify the stream’s position, data or
anything else in this state. When set back to PLAYING, it should continue process-
ing at the point where it left off as soon as possible.

• GST_STATE_PLAYING : in the PLAYING state, an element does exactly the same as
in the PAUSED state, except that it actually processes data.

You can change the state of an element using the function gst_element_set_state
() . If you set an element to another state, GStreamer will internally traverse all in-
termediate states. So if you set an element from NULL to PLAYING, GStreamer will
internally set the element to READY and PAUSED in between.
Even though an element in GST_STATE_PLAYING is ready for data processing, it will
not necessarily do that. If the element is placed in a thread (see Chapter 15), it will
process data automatically. In other cases, however, you will need to iterate the ele-
ment’s container.

Notes
1. ../../gstreamer/html/GstElement.html
2. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-

element-factory-make
3. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstObject.html#gst-

object-unref
4. The code for this example is automatically extracted from the documentation and

built under examples/manual in the GStreamer tarball.
5. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html
6. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html
7. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-

element-factory-find

17

Chapter 5. Elements

8. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-
element-factory-create

9. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html
10. http://developer.gnome.org/doc/API/2.0/gobject/index.html
11. http://le-hacker.org/papers/gobject/index.html
12. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/gstreamer/html/GstElementFactory.html
13. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html
14. http://gstreamer.freedesktop.org/modules/gst-editor.html

18

Chapter 6. Bins

A bin is a container element. You can add elements to a bin. Since a bin is an element
itself, a bin can be handled in the same way as any other element. Therefore, the
whole previous chapter (Elements) applies to bins as well.

What are bins
Bins allow you to combine a group of linked elements into one logical element. You
do not deal with the individual elements anymore but with just one element, the bin.
We will see that this is extremely powerful when you are going to construct complex
pipelines since it allows you to break up the pipeline in smaller chunks.
The bin will also manage the elements contained in it. It will figure out how the data
will flow in the bin and generate an optimal plan for that data flow. Plan generation
is one of the most complicated procedures in GStreamer . You will learn more about
this process, called scheduling, in Chapter 16.

src sink sinksrc

element2 element3element1

bin

Figure 6-1. Visualisation of a bin with some elements in it

There are two specialized types of bins available to the GStreamer programmer:

• A pipeline: a generic container that allows scheduling of the containing elements.
The toplevel bin has to be a pipeline. Every application thus needs at least one
of these. Applications can iterate pipelines using gst_bin_iterate () to make it
process data while in the playing state.

• A thread: a bin that will be run in a separate execution thread. You will have to use
this bin if you have to carefully synchronize audio and video, or for buffering. You
will learn more about threads in Chapter 15.

Creating a bin
Bins are created in the same way that other elements are created, i.e. using an
element factory. There are also convenience functions available (gst_bin_new () ,
gst_thread_new () and gst_pipeline_new ()). To add elements to a bin or
remove elements from a bin, you can use gst_bin_add () and gst_bin_remove
() . Note that the bin that you add an element to will take ownership of that element.
If you destroy the bin, the element will be dereferenced with it. If you remove an
element from a bin, it will be dereferenced automatically.

19

Chapter 6. Bins

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *bin, *pipeline, *source, *sink;

/* init */
gst_init (&argc, &argv);

/* create */
pipeline = gst_pipeline_new ("my_pipeline");
bin = gst_pipeline_new ("my_bin");
source = gst_element_factory_make ("fakesrc", "source");
sink = gst_element_factory_make ("fakesink", "sink");

/* set up pipeline */
gst_bin_add_many (GST_BIN (bin), source, sink, NULL);
gst_bin_add (GST_BIN (pipeline), bin);
gst_element_link (source, sink);

[..]

}

There are various functions to lookup elements in a bin. You can also get a list of all
elements that a bin contains using the function gst_bin_get_list () . See the API
references of GstBin 1 for details.

Custom bins
The application programmer can create custom bins packed with elements to per-
form a specific task. This allows you, for example, to write an Ogg/Vorbis decoder
with just the following lines of code:

int
main (int argc

char *argv[])
{
GstElement *player;

/* init */
gst_init (&argc, &argv);

/* create player */
player = gst_element_factory_make ("oggvorbisplayer", "player");

/* set the source audio file */
g_object_set (G_OBJECT (player), "location", "helloworld.ogg", NULL);

/* start playback */
gst_element_set_state (GST_ELEMENT (mp3player), GST_STATE_PLAYING);

[..]
}

Custom bins can be created with a plugin or an XML description. You will find more
information about creating custom bin in the Plugin Writers Guide2.

20

Chapter 6. Bins

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstBin.html
2. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html

21

Chapter 6. Bins

22

Chapter 7. Pads and capabilities

As we have seen in Elements, the pads are the element’s interface to the outside
world. Data streams from one element’s source pad to another element’s sink
pad. The specific type of media that the element can handle will be exposed by
the pad’s capabilities. We will talk more on capabilities later in this chapter (see
the Section called Capabilities of a pad).

Pads
A pad type is defined by two properties: its direction and its availability. As we’ve
mentioned before, GStreamer defines two pad directions: source pads and sink pads.
This terminology is defined from the view of within the element: elements receive
data on their sink pads and generate data on their source pads. Schematically, sink
pads are drawn on the left side of an element, whereas source pads are drawn on the
right side of an element. In such graphs, data flows from left to right. 1

Pad directions are very simple compared to pad availability. A pad can have any of
three availabilities: always, sometimes and on request. The meaning of those three
types is exactly as it says: always pads always exist, sometimes pad exist only in
certain cases (and can disappear randomly), and on-request pads appear only if ex-
plicitely requested by applications.

Dynamic (or sometimes) pads
Some elements might not have all of their pads when the element is created. This
can happen, for example, with an Ogg demuxer element. The element will read the
Ogg stream and create dynamic pads for each contained elementary stream (vorbis,
theora) when it detects such a stream in the Ogg stream. Likewise, it will delete the
pad when the stream ends. This principle is very useful for demuxer elements, for
example.
Running gst-inspect oggdemux will show that the element has only one pad: a sink
pad called ’sink’. The other pads are “dormant”. You can see this in the pad template
because there is an “Exists: Sometimes” property. Depending on the type of Ogg file
you play, the pads will be created. We will see that this is very important when you
are going to create dynamic pipelines. You can attach a signal handler to an element
to inform you when the element has created a new pad from one of its “sometimes”
pad templates. The following piece of code is an example of how to do this:

#include <gst/gst.h>

static void
cb_new_pad (GstElement *element,

GstPad *pad,
gpointer data)

{
g_print ("A new pad %s was created\n", gst_pad_get_name (pad));

/* here, you would setup a new pad link for the newly created pad */
[..]

}

int
main(int argc, char *argv[])
{
GstElement *pipeline, *source, *demux;

/* init */
gst_init (&argc, &argv);

23

Chapter 7. Pads and capabilities

/* create elements */
pipeline = gst_pipeline_new ("my_pipeline");
source = gst_element_factory_make ("filesrc", "source");
g_object_set (source, "location", argv[1], NULL);
demux = gst_element_factory_make ("oggdemux", "demuxer");

/* you would normally check that the elements were created properly */

/* put together a pipeline */
gst_bin_add_many (GST_BIN (pipeline), source, demux, NULL);
gst_element_link (source, demux);

/* listen for newly created pads */
g_signal_connect (demux, "new-pad", G_CALLBACK (cb_new_pad), NULL);

/* start the pipeline */
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);
while (gst_bin_iterate (GST_BIN (pipeline)));

[..]

}

Request pads
An element can also have request pads. These pads are not created automatically but
are only created on demand. This is very useful for multiplexers, aggregators and tee
elements. Aggregators are elements that merge the content of several input streams
together into one output stream. Tee elements are the reverse: they are elements that
have one input stream and copy this stream to each of their output pads, which are
created on request. Whenever an application needs another copy of the stream, it can
simply request a new output pad from the tee element.
The following piece of code shows how you can request a new output pad from a
“tee” element:

static void
some_function (GstElement *tee)
{
GstPad * pad;

pad = gst_element_get_request_pad (tee, "src%d");
g_print ("A new pad %s was created\n", gst_pad_get_name (pad));

/* here, you would link the pad */
[..]
}

The gst_element_get_request_pad () method can be used to get a pad from the
element based on the name of the pad template. It is also possible to request a pad
that is compatible with another pad template. This is very useful if you want to link
an element to a multiplexer element and you need to request a pad that is compat-
ible. The method gst_element_get_compatible_pad () can be used to request a
compatible pad, as shown in the next example. It will request a compatible pad from
an Ogg multiplexer from any input.

static void
link_to_multiplexer (GstPad *tolink_pad,

GstElement *mux)
{
GstPad *pad;

24

Chapter 7. Pads and capabilities

pad = gst_element_get_compatible_pad (mux, tolink_pad);
gst_pad_link (tolinkpad, pad);

g_print ("A new pad %s was created and linked to %s\n",
gst_pad_get_name (pad), gst_pad_get_name (tolink_pad));

}

Capabilities of a pad
Since the pads play a very important role in how the element is viewed by the outside
world, a mechanism is implemented to describe the data that can flow or currently
flows through the pad by using capabilities. Here,w e will briefly describe what capa-
bilities are and how to use them, enough to get an understanding of the concept. For
an in-depth look into capabilities and a list of all capabilities defined in GStreamer ,
see the Plugin Writers Guide2.
Capabilities are attached to pad templates and to pads. For pad templates, it will
describe the types of media that may stream over a pad created from this template.
For pads, it can either be a list of possible caps (usually a copy of the pad template’s
capabilities), in which case the pad is not yet negotiated, or it is the type of media that
currently streams over this pad, in which case the pad has been negotiated already.

Dissecting capabilities
A pads capabilities are described in a GstCaps object. Internally, a GstCaps 3 will con-
tain one or more GstStructure 4 that will describe one media type. A negotiated pad
will have capabilities set that contain exactly one structure. Also, this structure will
contain only fixed values. These constraints are not true for unnegotiated pads or pad
templates.
As an example, below is a dump of the capabilities of the “vorbisdec” element, which
you will get by running gst-inspect vorbisdec. You will see two pads: a source and a
sink pad. Both of these pads are always available, and both have capabilities attached
to them. The sink pad will accept vorbis-encoded audio data, with the mime-type
“audio/x-vorbis”. The source pad will be used to send raw (decoded) audio sam-
ples to the next element, with a raw audio mime-type (either “audio/x-raw-int” or
“audio/x-raw-float”). The source pad will also contain properties for the audio sam-
plerate and the amount of channels, plus some more that you don’t need to worry
about for now.

Pad Templates:
SRC template: ’src’

Availability: Always
Capabilities:

audio/x-raw-float
rate: [8000, 50000]

channels: [1, 2]
endianness: 1234

width: 32
buffer-frames: 0

SINK template: ’sink’
Availability: Always
Capabilities:

audio/x-vorbis

25

Chapter 7. Pads and capabilities

Properties and values
Properties are used to describe extra information for capabilities. A property consists
of a key (a string) and a value. There are different possible value types that can be
used:

• Basic types, this can be pretty much any GType registered with Glib. Those proper-
ties indicate a specific, non-dynamic value for this property. Examples include:
• An integer value (G_TYPE_INT): the property has this exact value.
• A boolean value (G_TYPE_BOOLEAN): the property is either TRUE or FALSE.
• A float value (G_TYPE_FLOAT): the property has this exact floating point value.
• A string value (G_TYPE_STRING): the property contains a UTF-8 string.

• Range types are GType s registered by GStreamer to indicate a range of possible
values. They are used for indicating allowed audio samplerate values or supported
video sizes. The two types defined in GStreamer are:
• An integer range value (GST_TYPE_INT_RANGE): the property denotes a range

of possible integers, with a lower and an upper boundary. The “vorbisdec” ele-
ment, for example, has a rate property that can be between 8000 and 50000.

• A float range value (GST_TYPE_FLOAT_RANGE): the property denotes a range of
possible floating point values, with a lower and an upper boundary.

• A list value (GST_TYPE_LIST): the property can take any value from a list of basic
values given in this list.

What capabilities are used for
Capabilities describe the type of data that is streamed between two pads, or that one
pad (template) supports. This makes them very useful for various purposes:

• Autoplugging: automatically finding elements to link to a pad based on its capa-
bilities. All autopluggers use this method.

• Compatibility detection: when two pads are linked, GStreamer can verify if the
two pads are talking about the same media type. The process of linking two pads
and checking if they are compatible is called “caps negotiation”.

• Metadata: by reading the capabilities from a pad, applications can provide infor-
mation about the type of media that is being streamed over the pad, which is in-
formation about the stream thatis currently being played back.

• Filtering: an application can use capabilities to limit the possible media types that
can stream between two pads to a specific subset of their supported stream types.
An application can, for example, use “filtered caps” to set a specific (non-fixed)
video size that will stream between two pads.

Using capabilities for metadata
A pad can have a set (i.e. one or more) of capabilities attached to it. You can get
values of properties in a set of capabilities by querying individual properties of one
structure. You can get a structure from a caps using gst_caps_get_structure () :

static void
read_video_props (GstCaps *caps)

26

Chapter 7. Pads and capabilities

{
gint width, height;
const GstStructure *str;

str = gst_caps_get_structure (caps);
if (!gst_structure_get_int (str, "width", &width) ||

!gst_structure_get_int (str, "height", &height)) {
g_print ("No width/height available\n");
return;

}

g_print ("The video size of this set of capabilities is %dx%d\n",
width, height);

}

Creating capabilities for filtering
While capabilities are mainly used inside a plugin to describe the media type of the
pads, the application programmer also has to have basic understanding of capabili-
ties in order to interface with the plugins, especially when using filtered caps. When
you’re using filtered caps or fixation, you’re limiting the allowed types of media that
can stream between two pads to a subset of their supported media types. You do this
by filtering using your own set of capabilities. In order to do this, you need to create
your own GstCaps . The simplest way to do this is by using the convenience function
gst_caps_new_simple () :

static void
link_pads_with_filter (GstPad *one,

GstPad *other)
{
GstCaps *caps;

caps = gst_caps_new_simple ("video/x-raw-yuv",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", G_TYPE_DOUBLE, 25.,
NULL);

gst_pad_link_filtered (one, other, caps);
}

In some cases, you will want to create a more elaborate set of capabilities to filter a
link between two pads. Then, this function is too simplistic and you’ll want to use
the method gst_caps_new_full () :

static void
link_pads_with_filter (GstPad *one,

GstPad *other)
{
GstCaps *caps;

caps = gst_caps_new_full (
gst_structure_new ("video/x-raw-yuv",

"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", G_TYPE_DOUBLE, 25.,
NULL),

gst_structure_new ("video/x-raw-rgb",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", G_TYPE_DOUBLE, 25.,
NULL),

27

Chapter 7. Pads and capabilities

NULL);

gst_pad_link_filtered (one, other, caps);
}

See the API references for the full API of GstStructure and GstCaps .

Ghost pads
You can see from Figure 7-1 how a bin has no pads of its own. This is where "ghost
pads" come into play.

src sink sinksrc

element2 element3element1

bin

sink

Figure 7-1. Visualisation of a GstBin 5 element without ghost pads

A ghost pad is a pad from some element in the bin that can be accessed directly from
the bin as well. Compare it to a symbolic link in UNIX filesystems. Using ghost pads
on bins, the bin also has a pad and can transparently be used as an element in other
parts of your code.

src sink sinksrc

element2 element3element1

bin

sink

sink

Figure 7-2. Visualisation of a GstBin 6 element with a ghost pad

28

Chapter 7. Pads and capabilities

Figure 7-2 is a representation of a ghost pad. The sink pad of element one is now also
a pad of the bin. Obviously, ghost pads can be added to any type of elements, not just
to a GstBin .
A ghostpad is created using the function gst_element_add_ghost_pad () :

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *bin, *sink;

/* init */
gst_init (&argc, &argv);

/* create element, add to bin, add ghostpad */
sink = gst_element_factory_make ("fakesink", "sink");
bin = gst_bin_new ("mybin");
gst_bin_add (GST_BIN (bin), sink);
gst_element_add_ghost_pad (bin,

gst_element_get_pad (sink, "sink"), "sink");

[..]

}

In the above example, the bin now also has a pad: the pad called “sink” of the given
element. The bin can, from here on, be used as a substitute for the sink element. You
could, for example, link another element to the bin.

Notes
1. In reality, there is no objection to data flowing from a source pad to the sink pad of

an element upstream (to the left of this element in drawings). Data will, however,
always flow from a source pad of one element to the sink pad of another.

2. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html
3. ../../gstreamer/html/gstreamer-GstCaps.html
4. ../../gstreamer/html/gstreamer-GstStructure.html
5. ../../gstreamer/html/GstBin.html
6. ../../gstreamer/html/GstBin.html

29

Chapter 7. Pads and capabilities

30

Chapter 8. Buffers and Events

The data flowing through a pipeline consists of a combination of buffers and events.
Buffers contain the actual pipeline data. Events contain control information, such
as seeking information and end-of-stream notifiers. All this will flow through the
pipeline automatically when it’s running. This chapter is mostly meant to explain
the concept to you; you don’t need to do anything for this.

Buffers
Buffers contain the data that will flow through the pipeline you have created. A
source element will typically create a new buffer and pass it through a pad to the
next element in the chain. When using the GStreamer infrastructure to create a me-
dia pipeline you will not have to deal with buffers yourself; the elements will do that
for you.
A buffer consists, amongst others, of:

• A pointer to a piece of memory.
• The size of the memory.
• A timestamp for the buffer.
• A refcount that indicates how many elements are using this buffer. This refcount

will be used to destroy the buffer when no element has a reference to it.
The simple case is that a buffer is created, memory allocated, data put in it, and
passed to the next element. That element reads the data, does something (like cre-
ating a new buffer and decoding into it), and unreferences the buffer. This causes the
data to be free’ed and the buffer to be destroyed. A typical video or audio decoder
works like this.
There are more complex scenarios, though. Elements can modify buffers in-place, i.e.
without allocating a new one. Elements can also write to hardware memory (such
as from video-capture sources) or memory allocated from the X-server using XShm).
Buffers can be read-only, and so on.

Events
Events are control particles that are sent both up- and downstream in a pipeline along
with buffers. Downstream events notify fellow elements of stream states. Possible
events include discontinuities, flushes, end-of-stream notifications and so on. Up-
stream events are used both in application-element interaction as well as event-event
interaction to request changes in stream state, such as seeks. For applications, only
upstream events are important. Downstream events are just explained to get a more
complete picture of the data concept.
Since most applications seek in time units, our example below does so too:

static void
seek_to_time (GstElement *element,

guint64 time_ns)
{
GstEvent *event;

event = gst_event_new_seek (GST_SEEK_METHOD_SET |
GST_FORMAT_TIME,
time_ns);

gst_element_send_event (element, event);
}

31

Chapter 8. Buffers and Events

The function gst_element_seek () is a shortcut for this. This is mostly just to show
how it all works.

32

Chapter 9. Your first application

This chapter will summarize everything you’ve learned in the previous chapters.
It describes all aspects of a simple GStreamer application, including initializing li-
braries, creating elements, packing elements together in a pipeline and playing this
pipeline. By doing all this, you will be able to build a simple Ogg/Vorbis audio
player.

Hello world
We’re going to create a simple first application, a simple Ogg/Vorbis command-line
audio player. For this, we will use only standard GStreamer components. The player
will read a file specified on the command-line. Let’s get started!
We’ve learned, in Chapter 4, that the first thing to do in your application is to initial-
ize GStreamer by calling gst_init () . Also, make sure that the application includes
gst/gst.h so all function names and objects are properly defined. Use #include
<gst/gst.h> to do that.
Next, you’ll want to create the different elements using gst_element_factory_make
() . For an Ogg/Vorbis audio player, we’ll need a source element that reads files from
a disk. GStreamer includes this element under the name “filesrc”. Next, we’ll need
something to parse the file and decoder it into raw audio. GStreamer has two ele-
ments for this: the first parses Ogg streams into elementary streams (video, audio)
and is called “oggdemux”. The second is a Vorbis audio decoder, it’s conveniently
called “vorbisdec”. Since “oggdemux” creates dynamic pads for each elementary
stream, you’ll need to set a “new-pad” event handler on the “oggdemux” element,
like you’ve learned in the Section called Dynamic (or sometimes) pads in Chapter 7, to
link the Ogg parser and the Vorbis decoder elements together. At last, we’ll also need
an audio output element, we will use “alsasink”, which outputs sound to an ALSA
audio device.
The last thing left to do is to add all elements into a container element, a
GstPipeline , and iterate this pipeline until we’ve played the whole song. We’ve
previously learned how to add elements to a container bin in Chapter 6, and we’ve
learned about element states in the Section called Element States in Chapter 5. We
will use the function gst_bin_sync_children_state () to synchronize the state
of a bin on all of its contained children.
Let’s now add all the code together to get our very first audio player:

#include <gst/gst.h>

/*
* Global objects are usually a bad thing. For the purpose of this
* example, we will use them, however.
*/

GstElement *pipeline, *source, *parser, *decoder, *sink;

static void
new_pad (GstElement *element,
GstPad *pad,
gpointer data)

{
/* We can now link this pad with the audio decoder and
* add both decoder and audio output to the pipeline. */

gst_pad_link (pad, gst_element_get_pad (decoder, "sink"));
gst_bin_add_many (GST_BIN (pipeline), decoder, sink, NULL);

/* This function synchronizes a bins state on all of its
* contained children. */

33

Chapter 9. Your first application

gst_bin_sync_children_state (GST_BIN (pipeline));
}

int
main (int argc,

char *argv[])
{
/* initialize GStreamer */
gst_init (&argc, &argv);

/* check input arguments */
if (argc != 2) {

g_print ("Usage: %s <Ogg/Vorbis filename>\n", argv[0]);
return -1;

}

/* create elements */
pipeline = gst_pipeline_new ("audio-player");
source = gst_element_factory_make ("filesrc", "file-source");
parser = gst_element_factory_make ("oggdemux", "ogg-parser");
decoder = gst_element_factory_make ("vorbisdec", "vorbis-decoder");
sink = gst_element_factory_make ("alsasink", "alsa-output");

/* set filename property on the file source */
g_object_set (G_OBJECT (source), "location", argv[1], NULL);

/* link together - note that we cannot link the parser and
* decoder yet, becuse the parser uses dynamic pads. For that,
* we set a new-pad signal handler. */

gst_element_link (source, parser);
gst_element_link (decoder, sink);
g_signal_connect (parser, "new-pad", G_CALLBACK (new_pad), NULL);

/* put all elements in a bin - or at least the ones we will use
* instantly. */

gst_bin_add_many (GST_BIN (pipeline), source, parser, NULL);

/* Now set to playing and iterate. We will set the decoder and
* audio output to ready so they initialize their memory already.
* This will decrease the amount of time spent on linking these
* elements when the Ogg parser emits the new-pad signal. */

gst_element_set_state (decoder, GST_STATE_READY);
gst_element_set_state (sink, GST_STATE_READY);
gst_element_set_state (pipeline, GST_STATE_PLAYING);

/* and now iterate - the rest will be automatic from here on.
* When the file is finished, gst_bin_iterate () will return
* FALSE, thereby terminating this loop. */

while (gst_bin_iterate (GST_BIN (pipeline))) ;

/* clean up nicely */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

We now have created a complete pipeline. We can visualise the pipeline as follows:

34

Chapter 9. Your first application

pipeline

src

disk_source

sink src

decoder

sink

play_audio

Figure 9-1. The "hello world" pipeline

Compiling and Running helloworld.c
To compile the helloworld example, use: gcc -Wall $(pkg-config --cflags --libs
gstreamer-0.8) helloworld.c -o helloworld. GStreamer makes use of pkg-config to
get compiler and linker flags needed to compile this application. If you’re running a
non-standard installation, make sure the PKG_CONFIG_PATH environment variable is
set to the correct location ($libdir/pkgconfig). application against the uninstalled
location.
You can run this example application with ./helloworld file.ogg. Substitute file.ogg
with your favourite Ogg/Vorbis file.

Conclusion
This concludes our first example. As you see, setting up a pipeline is very low-level
but powerful. You will see later in this manual how you can create a more pow-
erful media player with even less effort using higher-level interfaces. We will dis-
cuss all that in Part IV in GStreamer Application Development Manual (0.8.7.3). We will
first, however, go more in-depth into more advanced GStreamer internals.
It should be clear from the example that we can very easily replace the “filesrc” el-
ement with some other element that reads data from a network, or some other data
source element that is better integrated with your desktop environment. Also, you
can use other decoders and parsers to support other media types. You can use an-
other audio sink if you’re not running Linux, but Mac OS X, Windows or FreeBSD, or
you can instead use a filesink to write audio files to disk instead of playing them back.
By using an audio card source, you can even do audio capture instead of playback.
All this shows the reusability of GStreamer elements, which is its greatest advantage.

35

Chapter 9. Your first application

36

Chapter 10. Position tracking and seeking

So far, we’ve looked at how to create a pipeline to do media processing and how to
make it run ("iterate"). Most application developers will be interested in providing
feedback to the user on media progress. Media players, for example, will want to
show a slider showing the progress in the song, and usually also a label indicating
stream length. Transcoding applications will want to show a progress bar on how
much % of the task is done. GStreamer has built-in support for doing all this using a
concept known as querying. Since seeking is very similar, it will be discussed here as
well. Seeking is done using the concept of events.

Querying: getting the position or length of a stream
Querying is defined as requesting a specific stream-property related to progress
tracking. This includes getting the length of a stream (if available) or getting the
current position. Those stream properties can be retrieved in various formats
such as time, audio samples, video frames or bytes. The functions used are
gst_element_query () and gst_pad_query () .
Obviously, using either of the above-mentioned functions requires the application to
know which element or pad to run the query on. This is tricky, but there are some
good sides to the story. The good thing is that elements (or, rather, pads - since
gst_element_query () internally calls gst_pad_query ()) forward (“dispatch”)
events and queries to peer pads (or elements) if they don’t handle it themselves.
The bad side is that some elements (or pads) will handle events, but not the specific
formats that you want, and therefore it still won’t work.
Most queries will, fortunately, work fine. Queries are always dispatched backwards.
This means, effectively, that it’s easiest to run the query on your video or audio output
element, and it will take care of dispatching the query to the element that knows the
answer (such as the current position or the media length; usually the demuxer or
decoder).

#include <gst/gst.h>

gint
main (gint argc,

gchar *argv[])
{
GstElement *sink, *pipeline;

[..]

/* run pipeline */
do {

gint64 len, pos;
GstFormat fmt = GST_FORMAT_TIME;

if (gst_element_query (sink, GST_QUERY_POSITION, &fmt, &pos) &&
gst_element_query (sink, GST_QUERY_TOTAL, &fmt, &len)) {

g_print ("Time: %" GST_TIME_FORMAT " / %" GST_TIME_FORMAT "\r",
GST_TIME_ARGS (pos), GST_TIME_ARGS (len));

}
} while (gst_bin_iterate (GST_BIN (pipeline)));

[..]

}

If you are having problems with the dispatching behaviour, your best bet is to
manually decide which element to start running the query on. You can get a list of

37

Chapter 10. Position tracking and seeking

supported formats and query-types with gst_element_get_query_types () and
gst_element_get_formats () .

Events: seeking (and more)
Events work in a very similar way as queries. Dispatching, for example, works ex-
actly the same for events (and also has the same limitations). Although there are more
ways in which applications and elements can interact using events, we will only focus
on seeking here. This is done using the seek-event. A seek-event contains a seeking
offset, a seek method (which indicates relative to what the offset was given), a seek
format (which is the unit of the offset, e.g. time, audio samples, video frames or bytes)
and optionally a set of seeking-related flags (e.g. whether internal buffers should be
flushed). The behaviour of a seek is also wrapped in the function gst_element_seek
() .

static void
seek_to_time (GstElement *audiosink,

gint64 time_nanonseconds)
{
gst_element_seek (audiosink,

GST_SEEK_METHOD_SET | GST_FORMAT_TIME |
GST_SEEK_FLAG_FLUSH, time_nanoseconds);

}

38

Chapter 11. Metadata

GStreamer makes a clear distinction between two types of metadata, and has support
for both types. The first is stream tags, which describe the content of a stream in a
non-technical way. Examples include the author of a song, the title of that very same
song or the album it is a part of. The other type of metadata is stream-info, which is a
somewhat technical description of the properties of a stream. This can include video
size, audio samplerate, codecs used and so on. Tags are handled using the GStreamer
tagging system. Stream-info can be retrieved from a GstPad .

Stream information
Stream information can most easily be read by reading them
from a GstPad . This has already been discussed before in
the Section called Using capabilities for metadata in Chapter 7. Therefore, we will skip
it here.

Tag reading
Tag reading is remarkably simple in GStreamer Every element supports the “found-
tag” signal, which will be fired each the time the element reads tags from the stream.
A GstBin will conveniently forward tags found by its childs. Therefore, in most ap-
plications, you will only need to connect to the “found-tag” signal on the top-most
bin in your pipeline, and you will automatically retrieve all tags from the stream.
Note, however, that the “found-tag” might be fired multiple times and by multiple
elements in the pipeline. It is the application’s responsibility to put all those tags
together and display them to the user in a nice, coherent way.

Tag writing
WRITEME

39

Chapter 11. Metadata

40

Chapter 12. Interfaces

In the Section called Using an element as a GObject in Chapter 5, you have learned
how to use GObject properties as a simple way to do interaction between
applications and elements. This method suffices for the simple’n’straight settings,
but fails for anything more complicated than a getter and setter. For the more
complicated use cases, GStreamer uses interfaces based on the Glib GInterface
type.
Most of the interfaces handled here will not contain any example code. See the API
references for details. Here, we will just describe the scope and purpose of each in-
terface.

The Mixer interface
The mixer interface provides a uniform way to control the volume on a hardware (or
software) mixer. The interface is primarily intended to be implemented by elements
for audio inputs and outputs that talk directly to the hardware (e.g. OSS or ALSA
plugins).
Using this interface, it is possible to control a list of tracks (such as Line-in, Micro-
phone, etc.) from a mixer element. They can be muted, their volume can be changed
and, for input tracks, their record flag can be set as well.
Example plugins implementing this interface include the OSS elements (osssrc, os-
ssink, ossmixer) and the ALSA plugins (alsasrc, alsasink and alsamixer).

The Tuner interface
The tuner interface is a uniform way to control inputs and outputs on a multi-input
selection device. This is primarily used for input selection on elements for TV- and
capture-cards.
Using this interface, it is possible to select one track from a list of tracks supported by
that tuner-element. The tuner will than select that track for media-processing inter-
nally. This can, for example, be used to switch inputs on a TV-card (e.g. from Com-
posite to S-video).
This interface is currently only implemented by the Video4linux and Video4linux2
elements.

The Color Balance interface
The colorbalance interface is a way to control video-related properties on an element,
such as brightness, contrast and so on. It’s sole reason for existance is that, as far as
its authors know, there’s no way to dynamically register properties using GObject .
The colorbalance interface is implemented by several plugins, including xvimagesink
and the Video4linux and Video4linux2 elements.

The Property Probe interface
The property probe is a way to autodetect allowed values for a GObject property. It’s
primary use (and the only thing that we currently use it for) is to autodetect devices
in several elements. For example, the OSS elements use this interface to detect all
OSS devices on a system. Applications can then “probe” this property and get a list of
detected devices. Given the overlap between HAL and the practical implementations
of this interface, this might in time be deprecated in favour of HAL.

41

Chapter 12. Interfaces

This interface is currently implemented by many elements, including the ALSA, OSS,
Video4linux and Video4linux2 elements.

The X Overlay interface
The X Overlay interface was created to solve the problem of embedding video
streams in an application window. The application provides an X-window to the
element implementing this interface to draw on, and the element will then use this
X-window to draw on rather than creating a new toplevel window. This is useful to
embed video in video players.
This interface is implemented by, amongst others, the Video4linux and Video4linux2
elements and by ximagesink, xvimagesink and sdlvideosink.

42

Chapter 13. Clocks in GStreamer

WRITEME

43

Chapter 13. Clocks in GStreamer

44

Chapter 14. Dynamic Parameters

Getting Started
The Dynamic Parameters subsystem is contained within the gstcontrol library. You
need to include the header in your application’s source file:

...
#include <gst/gst.h>
#include <gst/control/control.h>
...

Your application should link to the shared library gstcontrol .
The gstcontrol library needs to be initialized when your application is run. This
can be done after the the GStreamer library has been initialized.

...
gst_init(&argc,&argv);
gst_control_init(&argc,&argv);
...

Creating and Attaching Dynamic Parameters
Once you have created your elements you can create and attach dparams to them.
First you need to get the element’s dparams manager. If you know exactly what
kind of element you have, you may be able to get the dparams manager directly.
However if this is not possible, you can get the dparams manager by calling
gst_dpman_get_manager .
Once you have the dparams manager, you must set the mode that the manager will
run in. There is currently only one mode implemented called "synchronous" - this
is used for real-time applications where the dparam value cannot be known ahead
of time (such as a slider in a GUI). The mode is called "synchronous" because the
dparams are polled by the element for changes before each buffer is processed. An-
other yet-to-be-implemented mode is "asynchronous" . This is used when parameter
changes are known ahead of time - such as with a timelined editor. The mode is called
"asynchronous" because parameter changes may happen in the middle of a buffer
being processed.

GstElement *sinesrc;
GstDParamManager *dpman;
...
sinesrc = gst_element_factory_make("sinesrc","sine-s ource");
...
dpman = gst_dpman_get_manager (sinesrc);
gst_dpman_set_mode(dpman, "synchronous");

If you don’t know the names of the required dparams for your element you can call
gst_dpman_list_dparam_specs(dpman) to get a NULL terminated array of param
specs. This array should be freed after use. You can find the name of the required
dparam by calling g_param_spec_get_name on each param spec in the array. In our
example, "volume" will be the name of our required dparam.
Each type of dparam currently has its own new function. This may eventually be
replaced by a factory method for creating new instances. A default dparam instance
can be created with the gst_dparam_new function. Once it is created it can be attached
to a required dparam in the element.

45

Chapter 14. Dynamic Parameters

GstDParam *volume;
...
volume = gst_dparam_new(G_TYPE_DOUBLE);
if (gst_dpman_attach_dparam (dpman, "volume", volume)){

/* the dparam was successfully attached */
...

}

Changing Dynamic Parameter Values
All interaction with dparams to actually set the dparam value is done through sim-
ple GObject properties. There is a property value for each type that dparams sup-
ports - these currently being "value_double" , "value_float" , "value_int" and
"value_int64" . To set the value of a dparam, simply set the property which matches
the type of your dparam instance.

#define ZERO(mem) memset(&mem, 0, sizeof(mem))
...

gdouble set_to_value;
GstDParam *volume;
GValue set_val;
ZERO(set_val);
g_value_init(&set_val, G_TYPE_DOUBLE);
...
g_value_set_double(&set_val, set_to_value);
g_object_set_property(G_OBJECT(volume), "value_double", &set_val);

Or if you create an actual GValue instance:

gdouble set_to_value;
GstDParam *volume;
GValue *set_val;
set_val = g_new0(GValue,1);
g_value_init(set_val, G_TYPE_DOUBLE);
...
g_value_set_double(set_val, set_to_value);
g_object_set_property(G_OBJECT(volume), "value_double", set_val);

Different Types of Dynamic Parameter
There are currently only two implementations of dparams so far. They are both for
real-time use so should be run in the "synchronous" mode.

GstDParam - the base dparam type
All dparam implementations will subclass from this type. It provides a basic
implementation which simply propagates any value changes as soon as it can.
A new instance can be created with the function GstDParam* gst_dparam_new
(GType type) . It has the following object properties:

• "value_double" - the property to set and get if it is a double dparam
• "value_float" - the property to set and get if it is a float dparam
• "value_int" - the property to set and get if it is an integer dparam

46

Chapter 14. Dynamic Parameters

• "value_int64" - the property to set and get if it is a 64 bit integer dparam
• "is_log" - readonly boolean which is TRUE if the param should be displayed on

a log scale
• "is_rate" - readonly boolean which is TRUE if the value is a proportion of the

sample rate. For example with a sample rate of 44100, 0.5 would be 22050 Hz and
0.25 would be 11025 Hz.

GstDParamSmooth - smoothing real-time dparam
Some parameter changes can create audible artifacts if they change too rapidly. The
GstDParamSmooth implementation can greatly reduce these artifacts by limiting the
rate at which the value can change. This is currently only supported for double
and float dparams - the other types fall back to the default implementation. A new
instance can be created with the function GstDParam* gst_dpsmooth_new (GType
type) . It has the following object properties:

• "update_period" - an int64 value specifying the number nanoseconds between
updates. This will be ignored in "synchronous" mode since the buffer size dictates
the update period.

• "slope_time" - an int64 value specifying the time period to use in the maximum
slope calculation

• "slope_delta_double" - a double specifying the amount a double value can
change in the given slope_time.

• "slope_delta_float" - a float specifying the amount a float value can change in
the given slope_time.

Audible artifacts may not be completely eliminated by using this dparam. The only
way to eliminate artifacts such as "zipper noise" would be for the element to imple-
ment its required dparams using the array method. This would allow dparams to
change parameters at the sample rate which should eliminate any artifacts.

Timelined dparams
A yet-to-be-implemented subclass of GstDParam will add an API which allows the
creation and manipulation of points on a timeline. This subclass will also provide a
dparam implementation which uses linear interpolation between these points to find
the dparam value at any given time. Further subclasses can extend this functionality
to implement more exotic interpolation algorithms such as splines.

47

Chapter 14. Dynamic Parameters

48

Chapter 15. Threads

GStreamer has support for multithreading through the use of the GstThread 1 ob-
ject. This object is in fact a special GstBin 2 that will start a new thread (using Glib’s
GThread system) when started.
To create a new thread, you can simply use gst_thread_new () . From then on, you
can use it similar to how you would use a GstBin . You can add elements to it, change
state and so on. The largest difference between a thread and other bins is that the
thread does not require iteration. Once set to the GST_STATE_PLAYING state, it will
iterate its contained children elements automatically.
Figure 15-1 shows how a thread can be visualised.

sink src sink src sink

disk_source parse decoder play_audio

thread

src

Figure 15-1. A thread

When would you want to use a thread?
There are several reasons to use threads. However, there’s also some reasons to limit
the use of threads as much as possible. We will go into the drawbacks of threading
in GStreamer in the next section. Let’s first list some situations where threads can be
useful:

• Data buffering, for example when dealing with network streams or when record-
ing data from a live stream such as a video or audio card. Short hickups elsewhere
in the pipeline will not cause data loss. See Figure 15-2 for a visualization of this
idea.

• Synchronizing output devices, e.g. when playing a stream containing both video
and audio data. By using threads for both outputs, they will run independently
and their synchronization will be better.

• Data pre-rolls. You can use threads and queues (thread boundaries) to cache a few
seconds of data before playing. By using this approach, the whole pipeline will
already be setup and data will already be decoded. When activating the rest of the
pipeline, the switch from PAUSED to PLAYING will be instant.

49

Chapter 15. Threads

sink src sink src sink

parse decoder play_audio

thread

disk_source
queue

src

Figure 15-2. a two-threaded decoder with a queue

Above, we’ve mentioned the “queue” element several times now. A queue is a thread
boundary element. It does so by using a classic provider/receiver model as learned
in threading classes at universities all around the world. By doing this, it acts both as
a means to make data throughput between threads threadsafe, and it can also act as
a buffer. Queues have several GObject properties to be configured for specific uses.
For example, you can set lower and upper tresholds for the element. If there’s less
data than the lower treshold (default: disabled), it will block output. If there’s more
data than the upper treshold, it will block input or (if configured to do so) drop data.

Constraints placed on the pipeline by the GstThread
Within the pipeline, everything is the same as in any other bin. The difference lies at
the thread boundary, at the link between the thread and the outside world (contain-
ing bin). Since GStreamer is fundamentally buffer-oriented rather than byte-oriented,
the natural solution to this problem is an element that can "buffer" the buffers be-
tween the threads, in a thread-safe fashion. This element is the “queue” element. A
queue should be placed in between any two elements whose pads are linked together
while the elements live in different threads. It doesn’t matter if the queue is placed in
the containing bin or in the thread itself, but it needs to be present on one side or the
other to enable inter-thread communication.
If you are writing a GUI application, making the top-level bin a thread will make
your GUI more responsive. If it were a pipeline instead, it would have to be iterated
by your application’s event loop, which increases the latency between events (say,
keyboard presses) and responses from the GUI. In addition, any slight hang in the
GUI would delay iteration of the pipeline, which (for example) could cause pops in
the output of the sound card, if it is an audio pipeline.
A problem with using threads is, however, thread contexts. If you connect to a signal
that is emitted inside a thread, then the signal handler for this thread will be executed in
that same thread! This is very important to remember, because many graphical toolkits
can not run multi-threaded. Gtk+, for example, only allows threaded access to UI
objects if you explicitely use mutexes. Not doing so will result in random crashes
and X errors. A solution many people use is to place an idle handler in the signal
handler, and have the actual signal emission code be executed in the idle handler,
which will be executed from the mainloop.
Generally, if you use threads, you will encounter some problems. Don’t hesistate to
ask us for help in case of problems.

50

Chapter 15. Threads

A threaded example application
As an example we show the helloworld program that we coded in Chapter 9 using
a thread. Note that the whole application lives in a thread (as opposed to half of the
application living in a thread and the other half being another thread or a pipeline).
Therefore, it does not need a queue element in this specific case.

#include <gst/gst.h>

GstElement *thread, *source, *decodebin, *audiosink;

static gboolean
idle_eos (gpointer data)
{
g_print ("Have idle-func in thread %p\n", g_thread_self ());
gst_main_quit ();

/* do this function only once */
return FALSE;

}

/*
* EOS will be called when the src element has an end of stream.
* Note that this function will be called in the thread context.
* We will place an idle handler to the function that really
* quits the application.
*/
static void
cb_eos (GstElement *thread,
gpointer data)
{
g_print ("Have eos in thread %p\n", g_thread_self ());
g_idle_add ((GSourceFunc) idle_eos, NULL);

}

/*
* On error, too, you’ll want to forward signals to the main
* thread, especially when using GUI applications.
*/

static void
cb_error (GstElement *thread,

GstElement *source,
GError *error,
gchar *debug,
gpointer data)

{
g_print ("Error in thread %p: %s\n", g_thread_self (), error->message);
g_idle_add ((GSourceFunc) idle_eos, NULL);

}

/*
* Link new pad from decodebin to audiosink.
* Contains no further error checking.
*/

static void
cb_newpad (GstElement *decodebin,

GstPad *pad,
gboolean last,
gpointer data)

{
gst_pad_link (pad, gst_element_get_pad (audiosink, "sink"));
gst_bin_add (GST_BIN (thread), audiosink);
gst_bin_sync_children_state (GST_BIN (thread));

}

51

Chapter 15. Threads

gint
main (gint argc,

gchar *argv[])
{
/* init GStreamer */
gst_init (&argc, &argv);

/* make sure we have a filename argument */
if (argc != 2) {

g_print ("usage: %s <Ogg/Vorbis filename>\n", argv[0]);
return -1;

}

/* create a new thread to hold the elements */
thread = gst_thread_new ("thread");
g_signal_connect (thread, "eos", G_CALLBACK (cb_eos), NULL);
g_signal_connect (thread, "error", G_CALLBACK (cb_error), NULL);

/* create elements */
source = gst_element_factory_make ("filesrc", "source");
g_object_set (G_OBJECT (source), "location", argv[1], NULL);
decodebin = gst_element_factory_make ("decodebin", "decoder");
g_signal_connect (decodebin, "new-decoded-pad",

G_CALLBACK (cb_newpad), NULL);
audiosink = gst_element_factory_make ("alsasink", "audiosink");

/* setup */
gst_bin_add_many (GST_BIN (thread), source, decodebin, NULL);
gst_element_link (source, decodebin);
gst_element_set_state (audiosink, GST_STATE_PAUSED);
gst_element_set_state (thread, GST_STATE_PLAYING);

/* no need to iterate. We can now use a mainloop */
gst_main ();

/* unset */
gst_element_set_state (thread, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (thread));

return 0;
}

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstThread.html
2. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstBin.html

52

Chapter 16. Scheduling

By now, you’ve seen several example applications. All of them would set up a
pipeline and call gst_bin_iterate () to start media processing. You might have
started wondering what happens during pipeline iteration. This whole process
of media processing is called scheduling. Scheduling is considered one of the
most complex parts of GStreamer . Here, we will do no more than give a global
overview of scheduling, most of which will be purely informative. It might help in
understanding the underlying parts of GStreamer .
The scheduler is responsible for managing the plugins at runtime. Its main responsi-
bilities are:

• Managing data throughput between pads and elements in a pipeline. This might
sometimes imply temporary data storage between elements.

• Calling functions in elements that do the actual data processing.
• Monitoring state changes and enabling/disabling elements in the chain.
• Selecting and distributing the global clock.

The scheduler is a pluggable component; this means that alternative schedulers can
be written and plugged into GStreamer. There is usually no need for interaction in
the process of choosing the scheduler, though. The default scheduler in GStreamer is
called “opt”. Some of the concepts discussed here are specific to opt.

Managing elements and data throughput
To understand some specifics of scheduling, it is important to know how elements
work internally. Largely, there are four types of elements: _chain () -based elements,
_loop () -based elements, _get () -based elements and decoupled elements. Each
of those have a set of features and limitations that are important for how they are
scheduled.

• _chain () -based elements are elements that have a _chain () -function defined
for each of their sinkpads. Those functions will receive data whenever input data
is available. In those functions, the element can push data over its source pad(s) to
peer elements. _chain () -based elements cannot pull additional data from their
sinkpad(s). Most elements in GStreamer are _chain () -based.

• _loop () -based elements are elements that have a _loop () -function defined for
the whole element. Inside this function, the element can pull buffers from its sink
pad(s) and push data over its source pad(s) as it sees fit. Such elements usually
require specific control over their input. Muxers and demuxers are usually _loop
() -based.

• _get () -based elements are elements with only source pads. For each source pad,
a _get () -function is defined, which is called whenever the peer element needs
additional input data. Most source elements are, in fact, _get () -based. Such an
element cannot actively push data.

• Decoupled elements are elements whose source pads are _get () -based and
whose sink pads are _chain () -based. The _chain () -function cannot push data
over its source pad(s), however. One such element is the “queue” element, which
is a thread boundary element. Since only one side of such elements are interesting
for one particular scheduler, we can safely handle those elements as if they were
either _get () - or _chain () -based. Therefore, we will further omit this type of
elements in the discussion.

53

Chapter 16. Scheduling

Obviously, the type of elements that are linked together have implications for how
the elements will be scheduled. If a get-based element is linked to a loop-based el-
ement and the loop-based element requests data from its sinkpad, we can just call
the get-function and be done with it. However, if two loop-based elements are linked
to each other, it’s a lot more complicated. Similarly, a loop-based element linked to a
chain-based element is a lot easier than two loop-based elements linked to each other.
The default GStreamer scheduler, “opt”, uses a concept of chains and groups. A
group is a series of elements that can that do not require any context switches or
intermediate data stores to be executed. In practice, this implies zero or one loop-
based elements, one get-based element (at the beginning) and an infinite amount of
chain-based elements. If there is a loop-based element, then the scheduler will simply
call this elements loop-function to iterate. If there is no loop-based element, then data
will be pulled from the get-based element and will be pushed over the chain-based
elements.
A chain is a series of groups that depend on each other for data. For example, two
linked loop-based elements would end up in different groups, but in the same chain.
Whenever the first loop-based element pushes data over its source pad, the data will
be temporarily stored inside the scheduler until the loop-function returns. When it’s
done, the loop-function of the second element will be called to process this data. If it
pulls data from its sinkpad while no data is available, the scheduler will “emulate” a
get-function and, in this function, iterate the first group until data is available.
The above is roughly how scheduling works in GStreamer . This has some implica-
tions for ideal pipeline design. An pipeline would ideally contain at most one loop-
based element, so that all data processing is immediate and no data is stored inside
the scheduler during group switches. You would think that this decreases overhead
significantly. In practice, this is not so bad, however. It’s something to keep in the
back of your mind, nothing more.

54

Chapter 17. Autoplugging

In Chapter 9, you’ve learned to build a simple media player for Ogg/Vorbis files. By
using alternative elements, you are able to build media players for other media types,
such as Ogg/Speex, MP3 or even video formats. However, you would rather want to
build an application that can automatically detect the media type of a stream and au-
tomatically generate the best possible pipeline by looking at all available elements in
a system. This process is called autoplugging, and GStreamer contains high-quality
autopluggers. If you’re looking for an autoplugger, don’t read any further and go to
Chapter 18. This chapter will explain the concept of autoplugging and typefinding. It
will explain what systems GStreamer includes to dynamically detect the type of a
media stream, and how to generate a pipeline of decoder elements to playback this
media. The same principles can also be used for transcoding. Because of the full dy-
namicity of this concept, GStreamer can be automatically extended to support new
media types without needing any adaptations to its autopluggers.
We will first introduce the concept of MIME types as a dynamic and extendible way
of identifying media streams. After that, we will introduce the concept of typefinding
to find the type of a media stream. Lastly, we will explain how autoplugging and the
GStreamer registry can be used to setup a pipeline that will convert media from one
mimetype to another, for example for media decoding.

MIME-types as a way to identity streams
We have previously introduced the concept of capabilities as a way for elements (or,
rather, pads) to agree on a media type when streaming data from one element to
the next (see the Section called Capabilities of a pad in Chapter 7). We have explained
that a capability is a combination of a mimetype and a set of properties. For most
container formats (those are the files that you will find on your hard disk; Ogg, for
example, is a container format), no properties are needed to describe the stream. Only
a MIME-type is needed. A full list of MIME-types and accompanying properties can
be found in the Plugin Writer’s Guide1.
An element must associate a MIME-type to its source and sink pads when it is loaded
into the system. GStreamer knows about the different elements and what type of data
they expect and emit through the GStreamer registry. This allows for very dynamic
and extensible element creation as we will see.
In Chapter 9, we’ve learned to build a music player for Ogg/Vorbis files. Let’s look
at the MIME-types associated with each pad in this pipeline. Figure 17-1 shows what
MIME-type belongs to each pad in this pipeline.

55

Chapter 17. Autoplugging

bin

src sink src sink src sink

disk_source parse decoder play_audio

? audio/raw
audio/mpeg

audio/rawaudio/mpeg

audio/mpeg

Figure 17-1. The Hello world pipeline with MIME types

Now that we have an idea how GStreamer identifies known media streams, we can
look at methods GStreamer uses to setup pipelines for media handling and for media
type detection.

Media stream type detection
Usually, when loading a media stream, the type of the stream is not known. This
means that before we can choose a pipeline to decode the stream, we first need to
detect the stream type. GStreamer uses the concept of typefinding for this. Typefind-
ing is a normal part of a pipeline, it will read data for as long as the type of a stream
is unknown. During this period, it will provide data to all plugins that implement a
typefinder. when one of the typefinders recognizes the stream, the typefind element
will emit a signal and act as a passthrough module from that point on. If no type was
found, it will emit an error and further media processing will stop.
Once the typefind element has found a type, the application can use this to plug
together a pipeline to decode the media stream. This will be discussed in the next
section.
Plugins in GStreamer can, as mentioned before, implement typefinder functionality.
A plugin implementing this functionality will submit a mimetype, optionally a set
of file extensions commonly used for this media type, and a typefind function. Once
this typefind function inside the plugin is called, the plugin will see if the data in
this media stream matches a specific pattern that marks the media type identified
by that mimetype. If it does, it will notify the typefind element of this fact, telling
which mediatype was recognized and how certain we are that this stream is indeed
that mediatype. Once this run has been completed for all plugins implementing a
typefind functionality, the typefind element will tell the application what kind of
media stream it thinks to have recognized.
The following code should explain how to use the typefind element. It will print the
detected media type, or tell that the media type was not found. The next section will
introduce more useful behaviours, such as plugging together a decoding pipeline.

#include <gst/gst.h>

static void
cb_typefound (GstElement *typefind,

56

Chapter 17. Autoplugging

guint probability,
GstCaps *caps,
gpointer data)

{
gchar *type;

type = gst_caps_to_string (caps);
g_print ("Media type %s found, probability %d%%\n", type, probability);
g_free (type);

/* done */
(* (gboolean *) data) = TRUE;

}

static void
cb_error (GstElement *pipeline,

GstElement *source,
GError *error,
gchar *debug,
gpointer data)

{
g_print ("Error: %s\n", error->message);

/* done */
(* (gboolean *) data) = TRUE;

}

gint
main (gint argc,

gchar *argv[])
{
GstElement *pipeline, *filesrc, *typefind;
gboolean done = FALSE;

/* init GStreamer */
gst_init (&argc, &argv);

/* check args */
if (argc != 2) {

g_print ("Usage: %s <filename>\n", argv[0]);
return -1;

}

/* create a new pipeline to hold the elements */
pipeline = gst_pipeline_new ("pipe");
g_signal_connect (pipeline, "error", G_CALLBACK (cb_error), &done);

/* create file source and typefind element */
filesrc = gst_element_factory_make ("filesrc", "source");
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);
typefind = gst_element_factory_make ("typefind", "typefinder");
g_signal_connect (typefind, "have-type", G_CALLBACK (cb_typefound), &done);

/* setup */
gst_bin_add_many (GST_BIN (pipeline), filesrc, typefind, NULL);
gst_element_link (filesrc, typefind);
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);

/* now iterate until the type is found */
do {

if (!gst_bin_iterate (GST_BIN (pipeline)))
break;

} while (!done);

/* unset */
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_NULL);

57

Chapter 17. Autoplugging

gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

Once a media type has been detected, you can plug an element (e.g. a demuxer or
decoder) to the source pad of the typefind element, and decoding of the media stream
will start right after.

Plugging together dynamic pipelines
In this chapter we will see how you can create a dynamic pipeline. A dynamic
pipeline is a pipeline that is updated or created while data is flowing through it.
We will create a partial pipeline first and add more elements while the pipeline is
playing. The basis of this player will be the application that we wrote in the previous
section (the Section called Media stream type detection) to identify unknown media
streams.
Once the type of the media has been found, we will find elements in the registry
that can decode this streamtype. For this, we will get all element factories (which
we’ve seen before in the Section called Creating a GstElement in Chapter 5) and find
the ones with the given MIME-type and capabilities on their sinkpad. Note that we
will only use parsers, demuxers and decoders. We will not use factories for any other
element types, or we might get into a loop of encoders and decoders. For this, we
will want to build a list of “allowed” factories right after initializing GStreamer .

static GList *factories;

/*
* This function is called by the registry loader. Its return value
* (TRUE or FALSE) decides whether the given feature will be included
* in the list that we’re generating further down.
*/

static gboolean
cb_feature_filter (GstPluginFeature *feature,

gpointer data)
{
const gchar *klass;
guint rank;

/* we only care about element factories */
if (!GST_IS_ELEMENT_FACTORY (feature))

return FALSE;

/* only parsers, demuxers and decoders */
klass = gst_element_factory_get_klass (GST_ELEMENT_FACTORY (feature));
if (g_strrstr (klass, "Demux") == NULL &&

g_strrstr (klass, "Decoder") == NULL &&
g_strrstr (klass, "Parse") == NULL)

return FALSE;

/* only select elements with autoplugging rank */
rank = gst_plugin_feature_get_rank (feature);
if (rank < GST_RANK_MARGINAL)

return FALSE;

return TRUE;
}

/*
* This function is called to sort features by rank.

58

Chapter 17. Autoplugging

*/

static gint
cb_compare_ranks (GstPluginFeature *f1,

GstPluginFeature *f2)
{
return gst_plugin_feature_get_rank (f2) - gst_plugin_feature_get_rank (f1);

}

static void
init_factories (void)
{
/* first filter out the interesting element factories */
factories = gst_registry_pool_feature_filter (

(GstPluginFeatureFilter) cb_feature_filter, FALSE, NULL);

/* sort them according to their ranks */
factories = g_list_sort (factories, (GCompareFunc) cb_compare_ranks);

}

From this list of element factories, we will select the one that most likely will
help us decoding a media stream to a given output type. For each newly
created element, we will again try to autoplug new elements to its source
pad(s). Also, if the element has dynamic pads (which we’ve seen before in
the Section called Dynamic (or sometimes) pads in Chapter 7), we will listen for
newly created source pads and handle those, too. The following code replaces the
cb_type_found from the previous section with a function to intiate autoplugging,
which will continue with the above approach.

static void try_to_plug (GstPad *pad, const GstCaps *caps);

static GstElement *audiosink;

static void
cb_newpad (GstElement *element,

GstPad *pad,
gpointer data)

{
GstCaps *caps;

caps = gst_pad_get_caps (pad);
try_to_plug (pad, caps);
gst_caps_free (caps);

}

static void
close_link (GstPad *srcpad,

GstElement *sinkelement,
const gchar *padname,
const GList *templlist)

{
gboolean has_dynamic_pads = FALSE;

g_print ("Plugging pad %s:%s to newly created %s:%s\n",
gst_object_get_name (GST_OBJECT (gst_pad_get_parent (srcpad))),
gst_pad_get_name (srcpad),
gst_object_get_name (GST_OBJECT (sinkelement)), padname);

/* add the element to the pipeline and set correct state */
gst_element_set_state (sinkelement, GST_STATE_PAUSED);
gst_bin_add (GST_BIN (pipeline), sinkelement);
gst_pad_link (srcpad, gst_element_get_pad (sinkelement, padname));
gst_bin_sync_children_state (GST_BIN (pipeline));

59

Chapter 17. Autoplugging

/* if we have static source pads, link those. If we have dynamic
* source pads, listen for new-pad signals on the element */

for (; templlist != NULL; templlist = templlist->next) {
GstPadTemplate *templ = GST_PAD_TEMPLATE (templlist->data);

/* only sourcepads, no request pads */
if (templ->direction != GST_PAD_SRC ||

templ->presence == GST_PAD_REQUEST) {
continue;

}

switch (templ->presence) {
case GST_PAD_ALWAYS: {
GstPad *pad = gst_element_get_pad (sinkelement, templ->name_template);
GstCaps *caps = gst_pad_get_caps (pad);

/* link */
try_to_plug (pad, caps);
gst_caps_free (caps);
break;

}
case GST_PAD_SOMETIMES:
has_dynamic_pads = TRUE;
break;

default:
break;

}
}

/* listen for newly created pads if this element supports that */
if (has_dynamic_pads) {

g_signal_connect (sinkelement, "new-pad", G_CALLBACK (cb_newpad), NULL);
}

}

static void
try_to_plug (GstPad *pad,

const GstCaps *caps)
{
GstObject *parent = GST_OBJECT (gst_pad_get_parent (pad));
const gchar *mime;
const GList *item;
GstCaps *res, *audiocaps;

/* don’t plug if we’re already plugged */
if (GST_PAD_IS_LINKED (gst_element_get_pad (audiosink, "sink"))) {

g_print ("Omitting link for pad %s:%s because we’re already linked\n",
gst_object_get_name (parent), gst_pad_get_name (pad));

return;
}

/* as said above, we only try to plug audio... Omit video */
mime = gst_structure_get_name (gst_caps_get_structure (caps, 0));
if (g_strrstr (mime, "video")) {

g_print ("Omitting link for pad %s:%s because mimetype %s is non-audio\n",
gst_object_get_name (parent), gst_pad_get_name (pad), mime);

return;
}

/* can it link to the audiopad? */
audiocaps = gst_pad_get_caps (gst_element_get_pad (audiosink, "sink"));
res = gst_caps_intersect (caps, audiocaps);
if (res && !gst_caps_is_empty (res)) {

g_print ("Found pad to link to audiosink - plugging is now done\n");
close_link (pad, audiosink, "sink", NULL);
gst_caps_free (audiocaps);

60

Chapter 17. Autoplugging

gst_caps_free (res);
return;

}
gst_caps_free (audiocaps);
gst_caps_free (res);

/* try to plug from our list */
for (item = factories; item != NULL; item = item->next) {

GstElementFactory *factory = GST_ELEMENT_FACTORY (item->data);
const GList *pads;

for (pads = gst_element_factory_get_pad_templates (factory);
pads != NULL; pads = pads->next) {

GstPadTemplate *templ = GST_PAD_TEMPLATE (pads->data);

/* find the sink template - need an always pad*/
if (templ->direction != GST_PAD_SINK ||

templ->presence != GST_PAD_ALWAYS) {
continue;

}

/* can it link? */
res = gst_caps_intersect (caps, templ->caps);
if (res && !gst_caps_is_empty (res)) {
GstElement *element;

/* close link and return */
gst_caps_free (res);
element = gst_element_factory_create (factory, NULL);
close_link (pad, element, templ->name_template,

gst_element_factory_get_pad_template s (factory));
return;

}
gst_caps_free (res);

/* we only check one sink template per factory, so move on to the
* next factory now */
break;

}
}

/* if we get here, no item was found */
g_print ("No compatible pad found to decode %s on %s:%s\n",

mime, gst_object_get_name (parent), gst_pad_get_name (pad));
}

static void
cb_typefound (GstElement *typefind,

guint probability,
GstCaps *caps,
gpointer data)

{
gchar *s;

s = gst_caps_to_string (caps);
g_print ("Detected media type %s\n", s);
g_free (s);

/* actually plug now */
try_to_plug (gst_element_get_pad (typefind, "src"), caps);

}

By doing all this, we will be able to make a simple autoplugger that can automatically
setup a pipeline for any media type. In the example below, we will do this for audio

61

Chapter 17. Autoplugging

only. However, we can also do this for video to create a player that plays both audio
and video.
The example above is a good first try for an autoplugger. Next steps would be to lis-
ten for “pad-removed” signals, so we can dynamically change the plugged pipeline
if the stream changes (this happens for DVB or Ogg radio). Also, you might want
special-case code for input with known content (such as a DVD or an audio-CD),
and much, much more. Moreover, you’ll want many checks to prevent infinite loops
during autoplugging, maybe you’ll want to implement shortest-path-finding to make
sure the most optimal pipeline is chosen, and so on. Basically, the features that you
implement in an autoplugger depend on what you want to use it for. For full-blown
implementations, see the “playbin”, “decodebin” and “spider” elements.

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/section-

types-definitions.html

62

Chapter 18. Components

GStreamer includes several higher-level components to simplify your applications
life. All of the components discussed here (for now) are targetted at media
playback. The idea of each of these components is to integrate as closely as
possible with a GStreamer pipeline, but to hide the complexity of media type
detection and several other rather complex topics that have been discussed in
Part III in GStreamer Application Development Manual (0.8.7.3).
We currently recommend people to use either playbin (see the Section called Playbin)
or decodebin (see the Section called Decodebin), depending on their needs. The other
components discussed here are either outdated or deprecated. The documentation is
provided for legacy purposes. Use of those other components is not recommended.

Playbin
Playbin is an element that can be created using the standard GStreamer API (e.g.
gst_element_factory_make ()). The factory is conveniently called “playbin”. By
being a GstElement , playbin automatically supports all of the features of this class,
including error handling, tag support, state handling, getting stream positions, seek-
ing, and so on.
Setting up a playbin pipeline is as simple as creating an instance of the playbin ele-
ment, setting a file location (this has to be a valid URI, so “<protocol>://<location>”,
e.g. file:///tmp/my.ogg or http://www.example.org/stream.ogg) using the “uri”
property on playbin, and then setting the element to the GST_STATE_PLAYING state.
Internally, playbin uses threads, so there’s no need to iterate the element or anything.
However, one thing to keep in mind is that signals fired by playbin might come from
another than the main thread, so be sure to keep this in mind in your signal handles.
Most application programmers will want to use a function such as g_idle_add ()
to make sure that the signal is handled in the main thread.

#include <gst/gst.h>

static void
cb_eos (GstElement *play,
gpointer data)
{
gst_main_quit ();

}

static void
cb_error (GstElement *play,

GstElement *src,
GError *err,
gchar *debug,
gpointer data)

{
g_print ("Error: %s\n", err->message);

}

gint
main (gint argc,

gchar *argv[])
{
GstElement *play;

/* init GStreamer */
gst_init (&argc, &argv);

/* make sure we have a URI */
if (argc != 2) {

g_print ("Usage: %s <URI>\n", argv[0]);

63

Chapter 18. Components

return -1;
}

/* set up */
play = gst_element_factory_make ("playbin", "play");
g_object_set (G_OBJECT (play), "uri", argv[1], NULL);
g_signal_connect (play, "eos", G_CALLBACK (cb_eos), NULL);
g_signal_connect (play, "error", G_CALLBACK (cb_error), NULL);
if (gst_element_set_state (play, GST_STATE_PLAYING) != GST_STATE_SUCCESS) {

g_print ("Failed to play\n");
return -1;

}

/* now run */
gst_main ();

/* also clean up */
gst_element_set_state (play, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (play));

return 0;
}

Playbin has several features that have been discussed previously:

• Settable video and audio output (using the “video-sink” and “audio-sink” proper-
ties).

• Mostly controllable and trackable as a GstElement , including error handling, eos
handling, tag handling, state handling, media position handling and seeking.

• Buffers network-sources.
• Supports visualizations for audio-only media.

Decodebin
Decodebin is the actual autoplugger backend of playbin, which was discussed in the
previous section. Decodebin will, in short, accept input from a source that is linked
to its sinkpad and will try to detect the media type contained in the stream, and
set up decoder routines for each of those. It will automatically select decoders. For
each decoded stream, it will emit the “new-decoded-pad” signal, to let the client
know about the newly found decoded stream. For unknown streams (which might
be the whole stream), it will emit the “unknown-type” signal. The application is then
responsible for reporting the error to the user.
The example code below will play back an audio stream of an input file. For read-
ability, it does not include any error handling of any sort.

#include <gst/gst.h>

GstElement *pipeline, *audio;
GstPad *audiopad;

static void
cb_newpad (GstElement *decodebin,

GstPad *pad,
gboolean last,
gpointer data)

{
GstCaps *caps;
GstStructure *str;

64

Chapter 18. Components

/* only link audio; only link once */
if (GST_PAD_IS_LINKED (audiopad))

return;
caps = gst_pad_get_caps (pad);
str = gst_caps_get_structure (caps, 0);
if (!g_strrstr (gst_structure_get_name (str), "audio"))

return;

/* link’n’play */
gst_pad_link (pad, audiopad);
gst_bin_add (GST_BIN (pipeline), audio);
gst_bin_sync_children_state (GST_BIN (pipeline));

}

gint
main (gint argc,

gchar *argv[])
{
GstElement *src, *dec, *conv, *scale, *sink;

/* init GStreamer */
gst_init (&argc, &argv);

/* make sure we have input */
if (argc != 2) {

g_print ("Usage: %s <filename>\n", argv[0]);
return -1;

}

/* setup */
pipeline = gst_pipeline_new ("pipeline");
src = gst_element_factory_make ("filesrc", "source");
g_object_set (G_OBJECT (src), "location", argv[1], NULL);
dec = gst_element_factory_make ("decodebin", "decoder");
g_signal_connect (dec, "new-decoded-pad", G_CALLBACK (cb_newpad), NULL);
audio = gst_bin_new ("audiobin");
conv = gst_element_factory_make ("audioconvert", "aconv");
audiopad = gst_element_get_pad (conv, "sink");
scale = gst_element_factory_make ("audioscale", "scale");
sink = gst_element_factory_make ("alsasink", "sink");
gst_bin_add_many (GST_BIN (audio), conv, scale, sink, NULL);
gst_element_link_many (conv, scale, sink, NULL);
gst_bin_add_many (GST_BIN (pipeline), src, dec, NULL);
gst_element_link (src, dec);

/* run */
gst_element_set_state (audio, GST_STATE_PAUSED);
gst_element_set_state (pipeline, GST_STATE_PLAYING);
while (gst_bin_iterate (GST_BIN (pipeline))) ;

/* cleanup */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

Decodebin, similar to playbin, supports the following features:

• Can decode an unlimited number of contained streams to decoded output pads.
• Is handled as a GstElement in all ways, including tag or error forwarding and state

handling.

65

Chapter 18. Components

Although decodebin is a good autoplugger, there’s a whole lot of things that it does
not do and is not intended to do:

• Taking care of input streams with a known media type (e.g. a DVD, an audio-CD
or such).

• Selection of streams (e.g. which audio track to play in case of multi-language media
streams).

• Overlaying subtitles over a decoded video stream.
Decodebin can be easily tested on the commandline, e.g. by using the command
gst-launch-0.8 filesrc location=file.ogg ! decodebin ! audioconvert ! audioscale ! al-
sasink.

Spider
Spider is an autoplugger that looks and feels very much like decodebin. On the com-
mandline, you can literally switch between spider and decodebin and it’ll mostly just
work. Try, for example, gst-launch-0.8 filesrc location=file.ogg ! spider ! audiocon-
vert ! audioscale ! alsasink. Although the two may seem very much alike from the
outside, they are very different from the inside. Those internal differences are the
main reason why spider is currently considered deprecated (along with the fact that
it was hard to maintain).
As opposed to decodebin, spider does not decode pads and emit signals for each
detected stream. Instead, you have to add output sinks to spider by create source
request pads and connecting those to sink elements. This means that streams decoded
by spider cannot be dynamic. Also, spider uses many loop-based elements internally,
which is rather heavy scheduler-wise.
Code for using spider would look almost identical to the code of decodebin, and is
therefore omitted. Also, featureset and limitations are very much alike, except for the
above-mentioned extra limitations for spider with respect to decodebin.

GstPlay
GstPlay is a GtkWidget with a simple API to play, pause and stop a media file.

GstEditor
GstEditor is a set of widgets to display a graphical representation of a pipeline.

66

Chapter 19. XML in GStreamer

GStreamer uses XML to store and load its pipeline definitions. XML is also used
internally to manage the plugin registry. The plugin registry is a file that contains
the definition of all the plugins GStreamer knows about to have quick access to the
specifics of the plugins.
We will show you how you can save a pipeline to XML and how you can reload that
XML file again for later use.

Turning GstElements into XML
We create a simple pipeline and write it to stdout with gst_xml_write_file (). The
following code constructs an MP3 player pipeline with two threads and then writes
out the XML both to stdout and to a file. Use this program with one argument: the
MP3 file on disk.

#include <stdlib.h>
#include <gst/gst.h>

gboolean playing;

int
main (int argc, char *argv[])
{
GstElement *filesrc, *osssink, *queue, *queue2, *decode;
GstElement *bin;
GstElement *thread, *thread2;

gst_init (&argc,&argv);

if (argc != 2) {
g_print ("usage: %s <mp3 filename>\n", argv[0]);
exit (-1);

}

/* create a new thread to hold the elements */
thread = gst_element_factory_make ("thread", "thread");
g_assert (thread != NULL);
thread2 = gst_element_factory_make ("thread", "thread2");
g_assert (thread2 != NULL);

/* create a new bin to hold the elements */
bin = gst_bin_new ("bin");
g_assert (bin != NULL);

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_assert (filesrc != NULL);
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

queue = gst_element_factory_make ("queue", "queue");
queue2 = gst_element_factory_make ("queue", "queue2");

/* and an audio sink */
osssink = gst_element_factory_make ("osssink", "play_audio");
g_assert (osssink != NULL);

decode = gst_element_factory_make ("mad", "decode");
g_assert (decode != NULL);

/* add objects to the main bin */
gst_bin_add_many (GST_BIN (bin), filesrc, queue, NULL);

67

Chapter 19. XML in GStreamer

gst_bin_add_many (GST_BIN (thread), decode, queue2, NULL);

gst_bin_add (GST_BIN (thread2), osssink);

gst_element_link_many (filesrc, queue, decode, queue2, osssink, NULL);

gst_bin_add_many (GST_BIN (bin), thread, thread2, NULL);

/* write the bin to stdout */
gst_xml_write_file (GST_ELEMENT (bin), stdout);

/* write the bin to a file */
gst_xml_write_file (GST_ELEMENT (bin), fopen ("xmlTest.gst", "w"));

exit (0);
}

The most important line is:

gst_xml_write_file (GST_ELEMENT (bin), stdout);

gst_xml_write_file () will turn the given element into an xmlDocPtr that is then for-
matted and saved to a file. To save to disk, pass the result of a fopen(2) as the second
argument.
The complete element hierarchy will be saved along with the inter element pad links
and the element parameters. Future GStreamer versions will also allow you to store
the signals in the XML file.

Loading a GstElement from an XML file
Before an XML file can be loaded, you must create a GstXML object. A saved XML file
can then be loaded with the gst_xml_parse_file (xml, filename, rootelement) method.
The root element can optionally left NULL. The following code example loads the
previously created XML file and runs it.

#include <stdlib.h>
#include <gst/gst.h>

int
main(int argc, char *argv[])
{
GstXML *xml;
GstElement *bin;
gboolean ret;

gst_init (&argc, &argv);

xml = gst_xml_new ();

ret = gst_xml_parse_file(xml, "xmlTest.gst", NULL);
g_assert (ret == TRUE);

bin = gst_xml_get_element (xml, "bin");
g_assert (bin != NULL);

gst_element_set_state (bin, GST_STATE_PLAYING);

while (gst_bin_iterate(GST_BIN(bin)));

68

Chapter 19. XML in GStreamer

gst_element_set_state (bin, GST_STATE_NULL);

exit (0);
}

gst_xml_get_element (xml, "name") can be used to get a specific element from the
XML file.
gst_xml_get_topelements (xml) can be used to get a list of all toplevel elements in the
XML file.
In addition to loading a file, you can also load a from a xmlDocPtr and an in mem-
ory buffer using gst_xml_parse_doc and gst_xml_parse_memory respectively. Both
of these methods return a gboolean indicating success or failure of the requested ac-
tion.

Adding custom XML tags into the core XML data
It is possible to add custom XML tags to the core XML created with gst_xml_write.
This feature can be used by an application to add more information to the save plug-
ins. The editor will for example insert the position of the elements on the screen using
the custom XML tags.
It is strongly suggested to save and load the custom XML tags using a namespace.
This will solve the problem of having your XML tags interfere with the core XML
tags.
To insert a hook into the element saving procedure you can link a signal to the GstEle-
ment using the following piece of code:

xmlNsPtr ns;

...
ns = xmlNewNs (NULL, "http://gstreamer.net/gst-test/1.0/", "test");

...
thread = gst_element_factory_make ("thread", "thread");
g_signal_connect (G_OBJECT (thread), "object_saved",

G_CALLBACK (object_saved), g_strdup ("decoder thread"));
...

When the thread is saved, the object_save method will be called. Our example will
insert a comment tag:

static void
object_saved (GstObject *object, xmlNodePtr parent, gpointer data)
{
xmlNodePtr child;

child = xmlNewChild (parent, ns, "comment", NULL);
xmlNewChild (child, ns, "text", (gchar *)data);

}

Adding the custom tag code to the above example you will get an XML file with the
custom tags in it. Here’s an excerpt:

...
<gst:element>

<gst:name>thread</gst:name>
<gst:type>thread</gst:type>
<gst:version>0.1.0</gst:version>

...

69

Chapter 19. XML in GStreamer

</gst:children>
<test:comment>

<test:text>decoder thread</test:text>
</test:comment>

</gst:element>
...

To retrieve the custom XML again, you need to attach a signal to the GstXML object
used to load the XML data. You can then parse your custom XML from the XML tree
whenever an object is loaded.
We can extend our previous example with the following piece of code.

xml = gst_xml_new ();

g_signal_connect (G_OBJECT (xml), "object_loaded",
G_CALLBACK (xml_loaded), xml);

ret = gst_xml_parse_file (xml, "xmlTest.gst", NULL);
g_assert (ret == TRUE);

Whenever a new object has been loaded, the xml_loaded function will be called. This
function looks like:

static void
xml_loaded (GstXML *xml, GstObject *object, xmlNodePtr self, gpointer data)
{
xmlNodePtr children = self->xmlChildrenNode;

while (children) {
if (!strcmp (children->name, "comment")) {

xmlNodePtr nodes = children->xmlChildrenNode;

while (nodes) {
if (!strcmp (nodes->name, "text")) {

gchar *name = g_strdup (xmlNodeGetContent (nodes));
g_print ("object %s loaded with comment ’%s’\n",

gst_object_get_name (object), name);
}
nodes = nodes->next;

}
}
children = children->next;

}
}

As you can see, you’ll get a handle to the GstXML object, the newly loaded GstObject
and the xmlNodePtr that was used to create this object. In the above example we look
for our special tag inside the XML tree that was used to load the object and we print
our comment to the console.

70

Chapter 20. Debugging

GStreamer has an extensive set of debugging tools for plugin developers.

Command line options
Applications using the GStreamer libraries accept the following set of command line
argruments that help in debugging.

• --gst-debug-help Print available debug categories and exit
• --gst-debug-level= LEVEL Sets the default debug level from 0 (no output) to 5

(everything)
• --gst-debug= LIST Comma-separated list of category_name:level

pairs to set specific levels for the individual categories. Example:
GST_AUTOPLUG:5,GST_ELEMENT_*:3

• --gst-debug-no-color Disable color debugging output
• --gst-debug-disable Disable debugging
• --gst-plugin-spew Enable printout of errors while loading GStreamer plugins.

Adding debugging to a plugin
Plugins can define their own categories for the debugging system. Three things need
to happen:

• The debugging variable needs to be defined somewhere. If you only have one
source file, you can Use GST_DEBUG_CATEGORY_STATIC to define a static de-
bug category variable.
If you have multiple source files, you should define the variable using
GST_DEBUG_CATEGORY in the source file where you’re initializing the debug
category. The other source files should use GST_DEBUG_CATEGORY_EXTERN
to declare the debug category variable, possibly by including a common header
that has this statement.

• The debugging category needs to be initialized. This is done through
GST_DEBUG_CATEGORY_INIT. If you’re using a global debugging category for
the complete plugin, you can call this in the plugin’s plugin_init . If the debug
category is only used for one of the elements, you can call it from the element’s
_class_init function.

• You should also define a default category to be used for debugging. This is done
by defining GST_CAT_DEFAULT for the source files where you’re using debug
macros.

Elements can then log debugging information using the set of macros. There are five
levels of debugging information:

1. ERROR for fatal errors (for example, internal errors)
2. WARNING for warnings
3. INFO for normal information

71

Chapter 20. Debugging

4. DEBUG for debug information (for example, device parameters)
5. LOG for regular operation information (for example, chain handlers)

For each of these levels, there are four macros to log debugging information. Taking
the LOG level as an example, there is

• GST_CAT_LOG_OBJECT logs debug information in the given GstCategory and for
the given GstObject

• GST_CAT_LOG logs debug information in the given GstCategory but without a
GstObject (this is useful for libraries, for example)

• GST_LOG_OBJECT logs debug information in the default GST_CAT_DEFAULT
category (as defined somewhere in the source), for the given GstObject

• GST_LOG logs debug information in the default GST_CAT_DEFAULT category,
without a GstObject

72

Chapter 21. Programs

gst-register
gst-register is used to rebuild the database of plugins. It is used after a new plu-
gin has been added to the system. The plugin database can be found, by default, in
/etc/gstreamer/reg.xml .

gst-launch
This is a tool that will construct pipelines based on a command-line syntax.
A simple commandline looks like:

gst-launch filesrc location=hello.mp3 ! mad ! osssink

A more complex pipeline looks like:

gst-launch filesrc location=redpill.vob ! mpegdemux name=demux \
{ demux.audio_00 ! queue ! a52dec ! audioconvert ! audioscale ! osssink } \
{ demux.video_00 ! queue ! mpeg2dec ! ffmpegcolorspace ! xvmagesink }

You can also use the parser in you own code. GStreamer provides a function
gst_parse_launch () that you can use to construct a pipeline. The following program
lets you create an MP3 pipeline using the gst_parse_launch () function:

#include <gst/gst.h>

int
main (int argc, char *argv[])
{
GstElement *pipeline;
GstElement *filesrc;
GError *error = NULL;

gst_init (&argc, &argv);

if (argc != 2) {
g_print ("usage: %s <filename>\n", argv[0]);
return -1;

}

pipeline = gst_parse_launch ("filesrc name=my_filesrc ! mad ! osssink", &error);
if (!pipeline) {

g_print ("Parse error: %s\n", error->message);
exit (1);

}

filesrc = gst_bin_get_by_name (GST_BIN (pipeline), "my_filesrc");
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

gst_element_set_state (pipeline, GST_STATE_PLAYING);

while (gst_bin_iterate (GST_BIN (pipeline)));

gst_element_set_state (pipeline, GST_STATE_NULL);

return 0;

73

Chapter 21. Programs

}

Note how we can retrieve the filesrc element from the constructed bin using the ele-
ment name.

Grammar Reference
The gst-launch syntax is processed by a flex/bison parser. This section is intended to
provide a full specification of the grammar; any deviations from this specification is
considered a bug.

Elements

... mad ...

A bare identifier (a string beginning with a letter and containing only letters, num-
bers, dashes, underscores, percent signs, or colons) will create an element from a
given element factory. In this example, an instance of the "mad" MP3 decoding plu-
gin will be created.

Links

... !sink ...

An exclamation point, optionally having a qualified pad name (an the name of the
pad, optionally preceded by the name of the element) on both sides, will link two
pads. If the source pad is not specified, a source pad from the immediately preceding
element will be automatically chosen. If the sink pad is not specified, a sink pad
from the next element to be constructed will be chosen. An attempt will be made
to find compatible pads. Pad names may be preceded by an element name, as in
my_element_name.sink_pad .

Properties

... location="http://gstreamer.net" ...

The name of a property, optionally qualified with an element name, and a value, sep-
arated by an equals sign, will set a property on an element. If the element is not speci-
fied, the previous element is assumed. Strings can optionally be enclosed in quotation
marks. Characters in strings may be escaped with the backtick (\). If the right-hand
side is all digits, it is considered to be an integer. If it is all digits and a decimal point,
it is a double. If it is "true", "false", "TRUE", or "FALSE" it is considered to be boolean.
Otherwise, it is parsed as a string. The type of the property is determined later on
in the parsing, and the value is converted to the target type. This conversion is not
guaranteed to work, it relies on the g_value_convert routines. No error message will
be displayed on an invalid conversion, due to limitations in the value convert API.

Bins, Threads, and Pipelines

(...)

74

Chapter 21. Programs

A pipeline description between parentheses is placed into a bin. The open paren may
be preceded by a type name, as in jackbin.(...) to make a bin of a specified type.
Square brackets make pipelines, and curly braces make threads. The default toplevel
bin type is a pipeline, although putting the whole description within parentheses or
braces can override this default.

gst-inspect
This is a tool to query a plugin or an element about its properties.
To query the information about the element mad, you would specify:

gst-inspect mad

Below is the output of a query for the osssink element:

Factory Details:
Long name: Audio Sink (OSS)
Class: Sink/Audio
Description: Output to a sound card via OSS
Version: 0.3.3.1
Author(s): Erik Walthinsen <omega@cse.ogi.edu>, Wim Taymans <wim.taymans@chello.be>
Copyright: (C) 1999

GObject
+----GstObject

+----GstElement
+----GstOssSink

Pad Templates:
SINK template: ’sink’

Availability: Always
Capabilities:

’osssink_sink’:
MIME type: ’audio/raw’:
format: String: int
endianness: Integer: 1234
width: List:

Integer: 8
Integer: 16

depth: List:
Integer: 8
Integer: 16

channels: Integer range: 1 - 2
law: Integer: 0
signed: List:

Boolean: FALSE
Boolean: TRUE

rate: Integer range: 1000 - 48000

Element Flags:
GST_ELEMENT_THREADSUGGESTED

Element Implementation:
No loopfunc(), must be chain-based or not configured yet
Has change_state() function: gst_osssink_change_state
Has custom save_thyself() function: gst_element_save_thyself
Has custom restore_thyself() function: gst_element_restore_thyself

Clocking Interaction:

75

Chapter 21. Programs

element requires a clock
element provides a clock: GstOssClock

Pads:
SINK: ’sink’

Implementation:
Has chainfunc(): 0x40056fc0

Pad Template: ’sink’

Element Arguments:
name : String (Default "element")
device : String (Default "/dev/dsp")
mute : Boolean (Default false)
format : Integer (Default 16)
channels : Enum "GstAudiosinkChannels" (default 1)

(0): Silence
(1): Mono
(2): Stereo

frequency : Integer (Default 11025)
fragment : Integer (Default 6)
buffer-size : Integer (Default 4096)

Element Signals:
"handoff" : void user_function (GstOssSink* object,

gpointer user_data);

To query the information about a plugin, you would do:

gst-inspect gstelements

76

Chapter 22. GNOME integration

GStreamer is fairly easy to integrate with GNOME applications. GStreamer uses
libxml 2.0, GLib 2.0 and popt, as do all other GNOME applications. There are how-
ever some basic issues you need to address in your GNOME applications.

Command line options
GNOME applications call gnome_program_init () to parse command-line options
and initialize the necessary gnome modules. GStreamer applications normally call
gst_init (&argc, &argv) to do the same for GStreamer.
Each of these two swallows the program options passed to the program, so we need
a different way to allow both GNOME and GStreamer to parse the command-line
options. This is shown in the following example.

#include <gnome.h>
#include <gst/gst.h>

int
main (int argc, char **argv)
{
GstPoptOption options[] = {

{ NULL, ’\0’, POPT_ARG_INCLUDE_TABLE, NULL, 0, "GStreamer", NULL },
POPT_TABLEEND

};
GnomeProgram *program;
poptContext context;
const gchar **argvn;

GstElement *pipeline;
GstElement *src, *sink;

options[0].arg = (void *) gst_init_get_popt_table ();
g_print ("Calling gnome_program_init with the GStreamer popt table\n");
/* gnome_program_init will initialize GStreamer now
* as a side effect of having the GStreamer popt table passed. */

if (! (program = gnome_program_init ("my_package", "0.1", LIBGNOMEUI_MODULE,
argc, argv,
GNOME_PARAM_POPT_TABLE, options,
NULL)))

g_error ("gnome_program_init failed");

g_print ("Getting gnome-program popt context\n");
g_object_get (program, "popt-context", &context, NULL);
argvn = poptGetArgs (context);
if (!argvn) {

g_print ("Run this example with some arguments to see how it works.\n");
return 0;

}

g_print ("Printing rest of arguments\n");
while (*argvn) {

g_print ("argument: %s\n", *argvn);
++argvn;

}

/* do some GStreamer things to show everything’s initialized properly */
g_print ("Doing some GStreamer stuff to show that everything works\n");
pipeline = gst_pipeline_new ("pipeline");
src = gst_element_factory_make ("fakesrc", "src");
sink = gst_element_factory_make ("fakesink", "sink");
gst_bin_add_many (GST_BIN (pipeline), src, sink, NULL);

77

Chapter 22. GNOME integration

gst_element_link (src, sink);
gst_element_set_state (pipeline, GST_STATE_PLAYING);
gst_bin_iterate (GST_BIN (pipeline));
gst_element_set_state (pipeline, GST_STATE_NULL);

return 0;
}

If you try out this program, you will see that when called with --help, it will print
out both GStreamer and GNOME help arguments. All of the arguments that didn’t
belong to either end up in the argvn pointer array.
FIXME: flesh this out more. How do we get the GStreamer arguments at the end ?
FIXME: add a GConf bit.

78

Chapter 23. Windows support

Building GStreamer under Win32
There are different makefiles that can be used to build GStreamer with the usual
Microsoft compiling tools.
The Makefile is meant to be used with the GNU make program and the free version
of the Microsoft compiler (http://msdn.microsoft.com/visualc/vctoolkit2003/). You
also have to modify your system environment variables to use it from the command-
line. You will also need a working Platform SDK for Windows that is available for
free from Microsoft.
The projects/makefiles will generate automatically some source files needed to com-
pile GStreamer. That requires that you have installed on your system some GNU
tools and that they are available in your system PATH.
The GStreamer project depends on other libraries, namely :

• GLib
• popt
• libxml2
• libintl
• libiconv
There is now an existing package that has all these dependencies built with
MSVC7.1. It exists either as precompiled librairies and headers in both Release
and Debug mode, or as the source package to build it yourself. You can find it on
http://mukoli.free.fr/gstreamer/deps/.

Notes: GNU tools needed that you can find on http://gnuwin32.sourceforge.net/

• GNU flex (tested with 2.5.4)

• GNU bison (tested with 1.35)

and http://www.mingw.org/

• GNU make (tested with 3.80)

the generated files from the -auto makefiles will be available soon separately on the net
for convenience (people who don’t want to install GNU tools).

Installation on the system
By default, GSTreamer needs a registry. You have to generate it using
"gst-register.exe". It will create the file in c:\gstreamer\registry.xml that will hold all
the plugins you can use.
You should install the GSTreamer core in c:\gstreamer\bin and the plugins in
c:\gstreamer\plugins. Both directories should be added to your system PATH. The
library dependencies should be installed in c:\usr
For example, my current setup is :

• c:\gstreamer\registry.xml

• c:\gstreamer\bin\gst-inspect.exe

79

Chapter 23. Windows support

• c:\gstreamer\bin\gst-launch.exe

• c:\gstreamer\bin\gst-register.exe

• c:\gstreamer\bin\gstbytestream.dll

• c:\gstreamer\bin\gstelements.dll

• c:\gstreamer\bin\gstoptimalscheduler .dll

• c:\gstreamer\bin\gstspider.dll

• c:\gstreamer\bin\libgtreamer-0.8.dll

• c:\gstreamer\plugins\gst-libs.dll

• c:\gstreamer\plugins\gstmatroska.dll

• c:\usr\bin\iconv.dll

• c:\usr\bin\intl.dll

• c:\usr\bin\libglib-2.0-0.dll

• c:\usr\bin\libgmodule-2.0-0.dll

• c:\usr\bin\libgobject-2.0-0.dll

• c:\usr\bin\libgthread-2.0-0.dll

• c:\usr\bin\libxml2.dll

• c:\usr\bin\popt.dll

Notes
1. http://msdn.microsoft.com/visualc/vctoolkit2003/
2. http://mukoli.free.fr/gstreamer/deps/
3. http://gnuwin32.sourceforge.net/
4. http://www.mingw.org/

80

Chapter 24. Quotes from the Developers

As well as being a cool piece of software, GStreamer is a lively project, with devel-
opers from around the globe very actively contributing. We often hang out on the
#gstreamer IRC channel on irc.freenode.net: the following are a selection of amusing1

quotes from our conversations.

14 Oct 2004
* zaheerm wonders how he can break gstreamer today :)
ensonic: zaheerm, spider is always a good starting point

14 Jun 2004
teuf : ok, things work much better when I don’t write incredibly stupid and
buggy code
thaytan: I find that too

23 Nov 2003
Uraeus: ah yes, the sleeping part, my mind is not multitasking so I was still think-
ing about exercise
dolphy: Uraeus: your mind is multitasking
dolphy: Uraeus: you just miss low latency patches

14 Sep 2002
--- wingo-party is now known as wingo
* wingo holds head

16 Feb 2001
wtay: I shipped a few commerical products to >40000 people now but GStreamer
is way more exciting...

16 Feb 2001
* tool-man is a gstreamer groupie

14 Jan 2001
Omega: did you run ldconfig? maybe it talks to init?
wtay: not sure, don’t think so... I did run gstreamer-register though :-)
Omega: ah, that did it then ;-)
wtay: right
Omega: probably not, but in case GStreamer starts turning into an OS, someone
please let me know?

81

Chapter 24. Quotes from the Developers

9 Jan 2001
wtay: me tar, you rpm?
wtay: hehe, forgot "zan"
Omega: ?
wtay: me tar"zan", you ...

7 Jan 2001
Omega: that means probably building an agreggating, cache-massaging queue to
shove N buffers across all at once, forcing cache transfer.
wtay: never done that before...
Omega: nope, but it’s easy to do in gstreamer <g>
wtay: sure, I need to rewrite cp with gstreamer too, someday :-)

7 Jan 2001
wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001
wtay: we need to cut down the time to create an mp3 player down to seconds...
richardb: :)
Omega: I’m wanting to something more interesting soon, I did the "draw an mp3
player in 15sec" back in October ’99.
wtay: by the time Omega gets his hands on the editor, you’ll see a complete audio
mixer in the editor :-)
richardb: Well, it clearly has the potential...
Omega: Working on it... ;-)

28 Dec 2000
MPAA: We will sue you now, you have violated our IP rights!
wtay: hehehe
MPAA: How dare you laugh at us? We have lawyers! We have Congressmen! We
have LARS!
wtay: I’m so sorry your honor
MPAA: Hrumph.
* wtay bows before thy

4 Jun 2001
taaz: you witchdoctors and your voodoo mpeg2 black magic...
omega_: um. I count three, no four different cults there <g>
ajmitch: hehe
omega_: witchdoctors, voodoo, black magic,
omega_: and mpeg

82

Chapter 24. Quotes from the Developers

Notes
1. No guarantee of sense of humour compatibility is given.

83

Chapter 24. Quotes from the Developers

84

	GStreamer Application Development Manual (0.8.7.3)
	Table of Contents
	Chapter 1. Introduction
	What is GStreamer?
	Structure of this Manual

	Chapter 2. Motivation & Goals
	Current problems
	Multitude of duplicate code
	'One goal' media players/libraries
	Non unified plugin mechanisms
	Poor user experience
	Provision for network transparency
	Catch up with the Windows world

	The design goals
	Clean and powerful
	Object oriented
	Extensible
	Allow binary only plugins
	High performance
	Clean core/plugins separation
	Provide a framework for codec experimentation

	Chapter 3. Foundations
	Elements
	Bins and pipelines
	Pads

	Chapter 4. Initializing GStreamer
	Simple initialization
	The popt interface

	Chapter 5. Elements
	What are elements?
	Source elements
	Filters, convertors, demuxers, muxers and codecs
	Sink elements

	Creating a GstElement
	Using an element as a GObject
	More about element factories
	Getting information about an element using a factory
	Finding out what pads an element can contain

	Linking elements
	Element States

	Chapter 6. Bins
	What are bins
	Creating a bin
	Custom bins

	Chapter 7. Pads and capabilities
	Pads
	Dynamic (or sometimes) pads
	Request pads

	Capabilities of a pad
	Dissecting capabilities
	Properties and values

	What capabilities are used for
	Using capabilities for metadata
	Creating capabilities for filtering

	Ghost pads

	Chapter 8. Buffers and Events
	Buffers
	Events

	Chapter 9. Your first application
	Hello world
	Compiling and Running helloworld.c
	Conclusion

	Chapter 10. Position tracking and seeking
	Querying: getting the position or length of a stream
	Events: seeking (and more)

	Chapter 11. Metadata
	Stream information
	Tag reading
	Tag writing

	Chapter 12. Interfaces
	The Mixer interface
	The Tuner interface
	The Color Balance interface
	The Property Probe interface
	The X Overlay interface

	Chapter 13. Clocks in GStreamer
	Chapter 14. Dynamic Parameters
	Getting Started
	Creating and Attaching Dynamic Parameters
	Changing Dynamic Parameter Values
	Different Types of Dynamic Parameter
	GstDParam the base dparam type
	GstDParamSmooth smoothing realtime dparam
	Timelined dparams

	Chapter 15. Threads
	When would you want to use a thread?
	Constraints placed on the pipeline by the GstThread
	A threaded example application

	Chapter 16. Scheduling
	Managing elements and data throughput

	Chapter 17. Autoplugging
	MIMEtypes as a way to identity streams
	Media stream type detection
	Plugging together dynamic pipelines

	Chapter 18. Components
	Playbin
	Decodebin
	Spider
	GstPlay
	GstEditor

	Chapter 19. XML in GStreamer
	Turning GstElements into XML
	Loading a GstElement from an XML file
	Adding custom XML tags into the core XML data

	Chapter 20. Debugging
	Command line options
	Adding debugging to a plugin

	Chapter 21. Programs
	gstregister
	gstlaunch
	Grammar Reference
	Elements
	Links
	Properties
	Bins, Threads, and Pipelines

	gstinspect

	Chapter 22. GNOME integration
	Command line options

	Chapter 23. Windows support
	Building GStreamer under Win32
	Installation on the system

	Chapter 24. Quotes from the Developers

