
GStreamer Plugin Writer’s Guide (0.10.1.2)

Richard John Boulton

Erik Walthinsen

Steve Baker

Leif Johnson

Ronald S. Bultje

GStreamer Plugin Writer’s Guide (0.10.1.2)
by Richard John Boulton, Erik Walthinsen, Steve Baker, Leif Johnson, and Ronald S. Bultje

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Table of Contents
I. Introduction..1

1. Preface..1
Who Should Read This Guide?...1
Preliminary Reading ..1
Structure of This Guide..1

2. Basic Concepts ..5
Elements and Plugins...5
Pads...5
Data, Buffers and Events ...6
Mimetypes and Properties ..7

II. Building a Plugin...11
3. Constructing the Boilerplate...11

Getting the GStreamer Plugin Templates..11
Using the Project Stamp...11
Examining the Basic Code...12
GstElementDetails ..13
GstStaticPadTemplate ..13
Constructor Functions..15
The plugin_init function ..15

4. Specifying the pads ..17
The setcaps-function ..17

5. The chain function..19
6. What are states? ..21

Managing filter state ..21
7. Adding Arguments ..23
8. Signals ..27
9. Building a Test Application ..29

III. Advanced Filter Concepts...31
10. Caps negotiation...31

Caps negotiation use cases ..31
Fixed caps ..31
Downstream caps negotiation ..32
Upstream caps (re)negotiation..34
Implementing a getcaps function...35

11. Different scheduling modes..37
The pad activation stage ..37
Pads driving the pipeline ..38
Providing random access ..39

12. Types and Properties..43
Building a Simple Format for Testing..43
Typefind Functions and Autoplugging ...43
List of Defined Types..44

13. Request and Sometimes pads...55
Sometimes pads ..55
Request pads ...57

14. Clocking...59
Types of time ...59
Clocks ...59
Flow of data between elements and time..59
Obligations of each element. ...59

15. Supporting Dynamic Parameters...61
Comparing Dynamic Parameters with GObject Properties61
Getting Started ..61
Defining Parameter Specifications ...62
The Data Processing Loop...65

16. MIDI ...67
17. Interfaces..69

iii

How to Implement Interfaces ...69
URI interface..70
Mixer Interface ..70
Tuner Interface ..73
Color Balance Interface ..75
Property Probe Interface..75
X Overlay Interface...77
Navigation Interface...78

18. Tagging (Metadata and Streaminfo)..81
Reading Tags from Streams...81
Writing Tags to Streams ...83

19. Events: Seeking, Navigation and More...87
Downstream events..87
Upstream events ...88
All Events Together ..88

IV. Creating special element types..93
20. Pre-made base classes ..93

Writing a sink ..93
Writing a source ..94
Writing a transformation element ..95

21. Writing a Demuxer or Parser..97
22. Writing a N-to-1 Element or Muxer...99
23. Writing a Manager ...101

V. Appendices ...103
24. Things to check when writing an element..103

About states ...103
Debugging ...103
Querying, events and the like ...103
Testing your element..104

25. Porting 0.8 plug-ins to 0.9 ...105
List of changes...105

26. GStreamer licensing ...107
How to license the code you write for GStreamer107

iv

Chapter 1. Preface

Who Should Read This Guide?
This guide explains how to write new modules for GStreamer. The guide is relevant
to several groups of people:

• Anyone who wants to add support for new ways of processing data in GStreamer.
For example, a person in this group might want to create a new data format con-
verter, a new visualization tool, or a new decoder or encoder.

• Anyone who wants to add support for new input and output devices. For example,
people in this group might want to add the ability to write to a new video output
system or read data from a digital camera or special microphone.

• Anyone who wants to extend GStreamer in any way. You need to have an un-
derstanding of how the plugin system works before you can understand the con-
straints that the plugin system places on the rest of the code. Also, you might be
surprised after reading this at how much can be done with plugins.

This guide is not relevant to you if you only want to use the existing functionality
of GStreamer, or if you just want to use an application that uses GStreamer. If you
are only interested in using existing plugins to write a new application - and there
are quite a lot of plugins already - you might want to check the GStreamer Application
Development Manual. If you are just trying to get help with a GStreamer application,
then you should check with the user manual for that particular application.

Preliminary Reading
This guide assumes that you are somewhat familiar with the basic workings of
GStreamer. For a gentle introduction to programming concepts in GStreamer, you
may wish to read the GStreamer Application Development Manual first. Also check out
the documentation available on the GStreamer web site1.
Since GStreamer adheres to the GObject programming model, this guide also as-
sumes that you understand the basics of GObject2 programming. There are several
good introductions to the GObject library, including the GTK+ Tutorial3 and the Glib
Object system4.

Structure of This Guide
To help you navigate through this guide, it is divided into several large parts. Each
part addresses a particular broad topic concerning GStreamer plugin development.
The parts of this guide are laid out in the following order:

• Building a Plugin - Introduction to the structure of a plugin, using an example au-
dio filter for illustration.
This part covers all the basic steps you generally need to perform to build a plugin,
such as registering the element with GStreamer and setting up the basics so it can
receive data from and send data to neighbour elements. The discussion begins by
giving examples of generating the basic structures and registering an element in
Constructing the Boilerplate. Then, you will learn how to write the code to get a
basic filter plugin working in Chapter 4, Chapter 5 and Chapter 6.
After that, we will show some of the GObject concepts on how to make an ele-
ment configurable for applications and how to do application-element interaction

1

Chapter 1. Preface

in Adding Arguments and Chapter 8. Next, you will learn to build a quick test ap-
plication to test all that you’ve just learned in Chapter 9. We will just touch upon
basics here. For full-blown application development, you should look at the Ap-
plication Development Manual5.

• Advanced Filter Concepts - Information on advanced features of GStreamer plu-
gin development.
After learning about the basic steps, you should be able to create a functional audio
or video filter plugin with some nice features. However, GStreamer offers more for
plugin writers. This part of the guide includes chapters on more advanced topics,
such as scheduling, media type definitions in GStreamer, clocks, interfaces and
tagging. Since these features are purpose-specific, you can read them in any order,
most of them don’t require knowledge from other sections.
The first chapter, named Different scheduling modes, will explain some of the
basics of element scheduling. It is not very in-depth, but is mostly some sort
of an introduction on why other things work as they do. Read this chapter if
you’re interested in GStreamer internals. Next, we will apply this knowledge and
discuss another type of data transmission than what you learned in Chapter 5:
Different scheduling modes. Loop-based elements will give you more control
over input rate. This is useful when writing, for example, muxers or demuxers.
Next, we will discuss media identification in GStreamer in Chapter 12. You will
learn how to define new media types and get to know a list of standard media
types defined in GStreamer.
In the next chapter, you will learn the concept of request- and sometimes-pads,
which are pads that are created dynamically, either because the application asked
for it (request) or because the media stream requires it (sometimes). This will be in
Chapter 13.
The next chapter, Chapter 14, will explain the concept of clocks in GStreamer. You
need this information when you want to know how elements should achieve au-
dio/video synchronization.
The next few chapters will discuss advanced ways of doing application-element
interaction. Previously, we learned on the GObject-ways of doing this in
Adding Arguments and Chapter 8. We will discuss dynamic parameters, which
are a way of defining element behaviour over time in advance, in Chapter 15.
Next, you will learn about interfaces in Chapter 17. Interfaces are very target-
specific ways of application-element interaction, based on GObject’s GInterface.
Lastly, you will learn about how metadata is handled in GStreamer in Chapter 18.
The last chapter, Chapter 19, will discuss the concept of events in GStreamer.
Events are, on the one hand, another way of doing application-element
interaction. It takes care of seeking, for example. On the other hand, it is also a
way in which elements interact with each other, such as letting each other know
about media stream discontinuities, forwarding tags inside a pipeline and so on.

• Creating special element types - Explanation of writing other plugin types.
Because the first two parts of the guide use an audio filter as an example, the
concepts introduced apply to filter plugins. But many of the concepts apply
equally to other plugin types, including sources, sinks, and autopluggers. This
part of the guide presents the issues that arise when working on these more
specialized plugin types. The chapter starts with a special focus on elements
that can be written using a base-class (Pre-made base classes), and later also
goes into writing special types of elements in Writing a Demuxer or Parser,
Writing a N-to-1 Element or Muxer and Writing a Manager.

• Appendices - Further information for plugin developers.
The appendices contain some information that stubbornly refuses to fit cleanly in
other sections of the guide. Most of this section is not yet finished.

2

Chapter 1. Preface

The remainder of this introductory part of the guide presents a short overview of the
basic concepts involved in GStreamer plugin development. Topics covered include
Elements and Plugins, Pads, Data, Buffers and Events and Types and Properties. If
you are already familiar with this information, you can use this short overview to
refresh your memory, or you can skip to Building a Plugin.
As you can see, there a lot to learn, so let’s get started!

• Creating compound and complex elements by extending from a GstBin. This will
allow you to create plugins that have other plugins embedded in them.

• Adding new mime-types to the registry along with typedetect functions. This will
allow your plugin to operate on a completely new media type.

Notes
1. http://gstreamer.freedesktop.org/documentation/
2. http://developer.gnome.org/doc/API/2.0/gobject/index.html
3. http://www.gtk.org/tutorial/
4. http://www.le-hacker.org/papers/gobject/index.html
5. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/index.html

3

Chapter 1. Preface

4

Chapter 2. Basic Concepts

This chapter of the guide introduces the basic concepts of GStreamer. Understand-
ing these concepts will help you grok the issues involved in extending GStreamer.
Many of these concepts are explained in greater detail in the GStreamer Application
Development Manual; the basic concepts presented here serve mainly to refresh your
memory.

Elements and Plugins
Elements are at the core of GStreamer. In the context of plugin development, an ele-
ment is an object derived from the GstElement1 class. Elements provide some sort of
functionality when linked with other elements: For example, a source element pro-
vides data to a stream, and a filter element acts on the data in a stream. Without
elements, GStreamer is just a bunch of conceptual pipe fittings with nothing to link.
A large number of elements ship with GStreamer, but extra elements can also be
written.
Just writing a new element is not entirely enough, however: You will need to encap-
sulate your element in a plugin to enable GStreamer to use it. A plugin is essentially
a loadable block of code, usually called a shared object file or a dynamically linked
library. A single plugin may contain the implementation of several elements, or just
a single one. For simplicity, this guide concentrates primarily on plugins containing
one element.
A filter is an important type of element that processes a stream of data. Producers
and consumers of data are called source and sink elements, respectively. Bin elements
contain other elements. One type of bin is responsible for scheduling the elements
that they contain so that data flows smoothly. Another type of bin, called autoplugger
elements, automatically add other elements to the bin and links them together so that
they act as a filter between two arbitary stream types.
The plugin mechanism is used everywhere in GStreamer, even if only the standard
packages are being used. A few very basic functions reside in the core library, and all
others are implemented in plugins. A plugin registry is used to store the details of
the plugins in an XML file. This way, a program using GStreamer does not have to
load all plugins to determine which are needed. Plugins are only loaded when their
provided elements are requested.
See the GStreamer Library Reference for the current implementation details of
GstElement2 and GstPlugin3.

Pads
Pads are used to negotiate links and data flow between elements in GStreamer. A pad
can be viewed as a “place” or “port” on an element where links may be made with
other elements, and through which data can flow to or from those elements. Pads
have specific data handling capabilities: A pad can restrict the type of data that flows
through it. Links are only allowed between two pads when the allowed data types of
the two pads are compatible.
An analogy may be helpful here. A pad is similar to a plug or jack on a physical
device. Consider, for example, a home theater system consisting of an amplifier, a
DVD player, and a (silent) video projector. Linking the DVD player to the amplifier is
allowed because both devices have audio jacks, and linking the projector to the DVD
player is allowed because both devices have compatible video jacks. Links between
the projector and the amplifier may not be made because the projector and amplifier
have different types of jacks. Pads in GStreamer serve the same purpose as the jacks
in the home theater system.

5

Chapter 2. Basic Concepts

For the most part, all data in GStreamer flows one way through a link between ele-
ments. Data flows out of one element through one or more source pads, and elements
accept incoming data through one or more sink pads. Source and sink elements have
only source and sink pads, respectively.
See the GStreamer Library Reference for the current implementation details of a
GstPad4.

Data, Buffers and Events
All streams of data in GStreamer are chopped up into chunks that are passed from
a source pad on one element to a sink pad on another element. Data are structures
used to hold these chunks of data.
Data contains the following important types:

• An exact type indicating what type of data (control, content, ...) this Data is.
• A reference count indicating the number of elements currently holding a reference

to the buffer. When the buffer reference count falls to zero, the buffer will be un-
linked, and its memory will be freed in some sense (see below for more details).

There are two types of data defined: events (control) and buffers (content).
Buffers may contain any sort of data that the two linked pads know how to handle.
Normally, a buffer contains a chunk of some sort of audio or video data that flows
from one element to another.
Buffers also contain metadata describing the buffer’s contents. Some of the important
types of metadata are:

• A pointer to the buffer’s data.
• An integer indicating the size of the buffer’s data.
• A timestamp indicating the preferred display timestamp of the content in the

buffer.

Events contain information on the state of the stream flowing between the two linked
pads. Events will only be sent if the element explicitely supports them, else the core
will (try to) handle the events automatically. Events are used to indicate, for example,
a clock discontinuity, the end of a media stream or that the cache should be flushed.
Events may contain several of the following items:

• A subtype indicating the type of the contained event.
• The other contents of the event depend on the specific event type.

Events will be discussed extensively in Chapter 19. Until then, the only event that
will be used is the EOS event, which is used to indicate the end-of-stream (usually
end-of-file).
See the GStreamer Library Reference for the current implementation details of a
GstData5, GstBuffer6 and GstEvent7.

6

Chapter 2. Basic Concepts

Buffer Allocation
Buffers are able to store chunks of memory of several different types. The most
generic type of buffer contains memory allocated by malloc(). Such buffers, although
convenient, are not always very fast, since data often needs to be specifically copied
into the buffer.
Many specialized elements create buffers that point to special memory. For example,
the filesrc element usually maps a file into the address space of the application (using
mmap()), and creates buffers that point into that address range. These buffers created
by filesrc act exactly like generic buffers, except that they are read-only. The buffer
freeing code automatically determines the correct method of freeing the underlying
memory. Downstream elements that recieve these kinds of buffers do not need to do
anything special to handle or unreference it.
Another way an element might get specialized buffers is to request them from a
downstream peer. These are called downstream-allocated buffers. Elements can ask
a peer connected to a source pad to create an empty buffer of a given size. If a down-
stream element is able to create a special buffer of the correct size, it will do so. Other-
wise GStreamer will automatically create a generic buffer instead. The element that
requested the buffer can then copy data into the buffer, and push the buffer to the
source pad it was allocated from.
Many sink elements have accelerated methods for copying data to hardware, or
have direct access to hardware. It is common for these elements to be able to create
downstream-allocated buffers for their upstream peers. One such example is xima-
gesink. It creates buffers that contain XImages. Thus, when an upstream peer copies
data into the buffer, it is copying directly into the XImage, enabling ximagesink to
draw the image directly to the screen instead of having to copy data into an XImage
first.
Filter elements often have the opportunity to either work on a buffer in-place, or work
while copying from a source buffer to a destination buffer. It is optimal to implement
both algorithms, since the GStreamer framework can choose the fastest algorithm as
appropriate. Naturally, this only makes sense for strict filters -- elements that have
exactly the same format on source and sink pads.

Mimetypes and Properties
GStreamer uses a type system to ensure that the data passed between elements is
in a recognized format. The type system is also important for ensuring that the pa-
rameters required to fully specify a format match up correctly when linking pads
between elements. Each link that is made between elements has a specified type and
optionally a set of properties.

The Basic Types
GStreamer already supports many basic media types. Following is a table of a few
of the the basic types used for buffers in GStreamer. The table contains the name
("mime type") and a description of the type, the properties associated with the
type, and the meaning of each property. A full list of supported types is included in
List of Defined Types.

Table 2-1. Table of Example Types

Mime Type Description Property Property
Type

Property
Values

Property
Description

7

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

audio/* All audio
types

rate integer greater than
0

The sample
rate of the
data, in
samples
(per
channel) per
second.

channels integer greater than
0

The
number of
channels of
audio data.

audio/x-
raw-int

Unstruc-
tured and
uncom-
pressed raw
integer
audio data.

endianness integer G_BIG_ENDIAN
(1234) or
G_LITTLE_ENDIAN
(4321)

The order
of bytes in a
sample. The
value
G_LITTLE_ENDIAN
(4321)
means
“little-
endian”
(byte-order
is “least
significant
byte first”).
The value
G_BIG_ENDIAN
(1234)
means “big-
endian”
(byte order
is “most
significant
byte first”).

signed boolean TRUE or
FALSE

Whether
the values of
the integer
samples are
signed or
not. Signed
samples use
one bit to
indicate
sign
(negative or
positive) of
the value.
Unsigned
samples are
always
positive.

width integer greater than
0

Number of
bits
allocated
per sample.

8

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

depth integer greater than
0

The
number of
bits used
per sample.
This must
be less than
or equal to
the width: If
the depth is
less than the
width, the
low bits are
assumed to
be the ones
used. For
example, a
width of 32
and a depth
of 24 means
that each
sample is
stored in a
32 bit word,
but only the
low 24 bits
are actually
used.

audio/mpeg Audio data
compressed
using the
MPEG
audio
encoding
scheme.

mpegversion integer 1, 2 or 4 The MPEG-
version
used for
encoding
the data.
The value 1
refers to
MPEG-1, -2
and -2.5
layer 1, 2 or
3. The
values 2 and
4 refer to the
MPEG-AAC
audio
encoding
schemes.

9

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

framed boolean 0 or 1 A true
value
indicates
that each
buffer
contains
exactly one
frame. A
false value
indicates
that frames
and buffers
do not
necessarily
match up.

layer integer 1, 2, or 3 The
compression
scheme
layer used
to compress
the data
(only if
mpegver-
sion=1).

bitrate integer greater than
0

The bitrate,
in bits per
second. For
VBR
(variable
bitrate)
MPEG data,
this is the
average
bitrate.

audio/x-
vorbis

Vorbis
audio data

There are
currently no
specific
properties
defined for
this type.

Notes
1. ../../gstreamer/html/GstElement.html
2. ../../gstreamer/html/GstElement.html
3. ../../gstreamer/html/gstreamer-GstPlugin.html
4. ../../gstreamer/html/GstPad.html
5. ../../gstreamer/html/gstreamer-GstData.html
6. ../../gstreamer/html/gstreamer-GstBuffer.html
7. ../../gstreamer/html/gstreamer-GstEvent.html

10

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimum code for a new
plugin. Starting from ground zero, you will see how to get the GStreamer template
source. Then you will learn how to use a few basic tools to copy and modify a tem-
plate plugin to create a new plugin. If you follow the examples here, then by the end
of this chapter you will have a functional audio filter plugin that you can compile
and use in GStreamer applications.

Getting the GStreamer Plugin Templates
There are currently two ways to develop a new plugin for GStreamer: You can write
the entire plugin by hand, or you can copy an existing plugin template and write the
plugin code you need. The second method is by far the simpler of the two, so the first
method will not even be described here. (Errm, that is, “it is left as an exercise to the
reader.”)
The first step is to check out a copy of the gst-template CVS module to get an
important tool and the source code template for a basic GStreamer plugin. To check
out the gst-templatemodule, make sure you are connected to the internet, and type
the following commands at a command console:

shell $ cvs -d:pserver:anoncvs@cvs.freedesktop.org/cvs/gstreamer login
Logging in to :pserver:anoncvs@cvs.freedesktop.org:/cvs/gstreamer
CVS password: [ENTER]

shell $ cvs -z3 -d:pserver:anoncvs@cvs.freedesktop.org:/cvs/gstreamer co gst-template
U gst-template/README
U gst-template/gst-app/AUTHORS
U gst-template/gst-app/ChangeLog
U gst-template/gst-app/Makefile.am
U gst-template/gst-app/NEWS
U gst-template/gst-app/README
U gst-template/gst-app/autogen.sh
U gst-template/gst-app/configure.ac
U gst-template/gst-app/src/Makefile.am
...

After the first command, you will have to press ENTER to log in to the CVS server.
(You might have to log in twice.) The second command will check out a series of
files and directories into ./gst-template. The template you will be using is in
./gst-template/gst-plugin/ directory. You should look over the files in that
directory to get a general idea of the structure of a source tree for a plugin.

Using the Project Stamp
The first thing to do when making a new element is to specify some basic details
about it: what its name is, who wrote it, what version number it is, etc. We also need
to define an object to represent the element and to store the data the element needs.
These details are collectively known as the boilerplate.
The standard way of defining the boilerplate is simply to write some code, and fill
in some structures. As mentioned in the previous section, the easiest way to do
this is to copy a template and add functionality according to your needs. To help
you do so, there are some tools in the ./gst-plugins/tools/ directory. One tool,
gst-quick-stamp, is a quick command line tool. The other, gst-project-stamp, is
a full GNOME druid application that takes you through the steps of creating a new
project (either a plugin or an application).

11

Chapter 3. Constructing the Boilerplate

To use pluginstamp.sh, first open up a terminal window. Change to the
gst-template directory, and then run the pluginstamp.sh command. The
arguments to the pluginstamp.sh are:

1. the name of the plugin, and
2. the directory that should hold a new subdirectory for the source tree of the

plugin.
Note that capitalization is important for the name of the plugin. Under some
operating systems, capitalization is also important when specifying directory
names. For example, the following commands create the ExampleFilter plugin
based on the plugin template and put the output files in a new directory called
~/src/examplefilter/:

shell $ cd gst-template
shell $ tools/pluginstamp.sh ExampleFilter ~/src

Examining the Basic Code
First we will examine the code you would be likely to place in a header file (although
since the interface to the code is entirely defined by the plugin system, and doesn’t
depend on reading a header file, this is not crucial.) The code here can be found in
examples/pwg/examplefilter/boiler/gstexamplefilter.h.

Example 3-1. Example Plugin Header File

#include <gst/gst.h>

/* Definition of structure storing data for this element. */
typedef struct _GstMyFilter {
GstElement element;

GstPad *sinkpad, *srcpad;

gboolean silent;

} GstMyFilter;

/* Standard definition defining a class for this element. */
typedef struct _GstMyFilterClass {
GstElementClass parent_class;

} GstMyFilterClass;

/* Standard macros for defining types for this element. */
#define GST_TYPE_MY_FILTER \
(gst_my_filter_get_type())

#define GST_MY_FILTER(obj) \
(G_TYPE_CHECK_INSTANCE_CAST((obj),GST_TYPE_MY_FILTER,GstMyFilter))

#define GST_MY_FILTER_CLASS(klass) \
(G_TYPE_CHECK_CLASS_CAST((klass),GST_TYPE_MY_FILTER,GstMyFilterClass))

#define GST_IS_MY_FILTER(obj) \
(G_TYPE_CHECK_INSTANCE_TYPE((obj),GST_TYPE_MY_FILTER))

#define GST_IS_MY_FILTER_CLASS(obj) \
(G_TYPE_CHECK_CLASS_TYPE((klass),GST_TYPE_MY_FILTER))

/* Standard function returning type information. */
GType gst_my_filter_get_type (void);

12

Chapter 3. Constructing the Boilerplate

Using this header file, you can use the following macro to setup the GObject basics
in your source file so that all functions will be called appropriately:

#include "filter.h"

GST_BOILERPLATE (GstMyFilter, gst_my_filter, GstElement, GST_TYPE_ELEMENT);

GstElementDetails
The GstElementDetails structure gives a hierarchical type for the element, a human-
readable description of the element, as well as author and version data. The entries
are:

• A long, english, name for the element.
• The type of the element, as a hierarchy. The hierarchy is defined by specifying the

top level category, followed by a "/", followed by the next level category, etc. The
type should be defined according to the guidelines elsewhere in this document.
(FIXME: write the guidelines, and give a better reference to them)

• A brief description of the purpose of the element.
• The name of the author of the element, optionally followed by a contact email

address in angle brackets.
For example:

static GstElementDetails my_filter_details = {
"An example plugin",
"Example/FirstExample",
"Shows the basic structure of a plugin",
"your name <your.name@your.isp>"

};

The element details are registered with the plugin during the _base_init () func-
tion, which is part of the GObject system. The _base_init () function should be set
for this GObject in the function where you register the type with Glib.

static void
gst_my_filter_base_init (gpointer klass)
{
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

static GstElementDetails my_filter_details = {
[..]
};

[..]
gst_element_class_set_details (element_class, &my_filter_details);

}

GstStaticPadTemplate
A GstStaticPadTemplate is a description of a pad that the element will (or might)
create and use. It contains:

• A short name for the pad.
13

Chapter 3. Constructing the Boilerplate

• Pad direction.
• Existence property. This indicates whether the pad exists always (an “always”

pad), only in some cases (a “sometimes” pad) or only if the application requested
such a pad (a “request” pad).

• Supported types by this element (capabilities).
For example:

static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (
"sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
GST_STATIC_CAPS ("ANY")

);

Those pad templates are registered during the _base_init () function. Pads
are created from these templates in the element’s _init () function using
gst_pad_new_from_template (). The template can be retrieved from the
element class using gst_element_class_get_pad_template (). See below
for more details on this. In order to create a new pad from this template using
gst_pad_new_from_template (), you will need to declare the pad template as a
global variable. More on this subject in Chapter 4.

static GstStaticPadTemplate sink_factory = [..],
src_factory = [..];

static void
gst_my_filter_base_init (gpointer klass)
{
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

[..]

gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&src_factory));
gst_element_class_add_pad_template (element_class,

gst_static_pad_template_get (&sink_factory));
}

The last argument in a template is its type or list of supported types. In this example,
we use ’ANY’, which means that this element will accept all input. In real-life situa-
tions, you would set a mimetype and optionally a set of properties to make sure that
only supported input will come in. This representation should be a string that starts
with a mimetype, then a set of comma-separates properties with their supported val-
ues. In case of an audio filter that supports raw integer 16-bit audio, mono or stereo
at any samplerate, the correct template would look like this:

static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (
"sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
GST_STATIC_CAPS (

"audio/x-raw-int, "
"width = (int) 16, "
"depth = (int) 16, "
"endianness = (int) BYTE_ORDER, "
"channels = (int) { 1, 2 }, "
"rate = (int) [8000, 96000]"

14

Chapter 3. Constructing the Boilerplate

)
);

Values surrounded by curly brackets (“{” and “}”) are lists, values surrounded by
square brackets (“[” and “]”) are ranges. Multiple sets of types are supported too,
and should be separated by a semicolon (“;”). Later, in the chapter on pads, we will
see how to use types to know the exact format of a stream: Chapter 4.

Constructor Functions
Each element has three functions which are used for construction of an element.
These are the _base_init() function which is meant to initialize class and child
class properties during each new child class creation; the _class_init() function,
which is used to initialise the class only once (specifying what signals, arguments and
virtual functions the class has and setting up global state); and the _init() function,
which is used to initialise a specific instance of this type.

The plugin_init function
Once we have written code defining all the parts of the plugin, we need to write
the plugin_init() function. This is a special function, which is called as soon as the
plugin is loaded, and should return TRUE or FALSE depending on whether it loaded
initialized any dependencies correctly. Also, in this function, any supported element
type in the plugin should be registered.

static gboolean
plugin_init (GstPlugin *plugin)
{
return gst_element_register (plugin, "my_filter",

GST_RANK_NONE,
GST_TYPE_MY_FILTER);

}

GST_PLUGIN_DEFINE (
GST_VERSION_MAJOR,
GST_VERSION_MINOR,
"my_filter",
"My filter plugin",
plugin_init,
VERSION,
"LGPL",
"GStreamer",
"http://gstreamer.net/"

)

Note that the information returned by the plugin_init() function will be cached in a
central registry. For this reason, it is important that the same information is always
returned by the function: for example, it must not make element factories available
based on runtime conditions. If an element can only work in certain conditions (for
example, if the soundcard is not being used by some other process) this must be
reflected by the element being unable to enter the READY state if unavailable, rather
than the plugin attempting to deny existence of the plugin.

15

Chapter 3. Constructing the Boilerplate

16

Chapter 4. Specifying the pads

As explained before, pads are the port through which data goes in and out of your
element, and that makes them a very important item in the process of element cre-
ation. In the boilerplate code, we have seen how static pad templates take care of
registering pad templates with the element class. Here, we will see how to create ac-
tual elements, use a _setcaps ()-functions to configure for a particular format and
how to register functions to let data flow through the element.
In the element _init () function, you create the pad from the pad template that has
been registered with the element class in the _base_init () function. After creating
the pad, you have to set a _setcaps () function pointer and optionally a _getcaps
() function pointer. Also, you have to set a _chain () function pointer. Alterna-
tively, pads can also operate in looping mode, which mans that they can pull data
themselves. More on this topic later. After that, you have to register the pad with the
element. This happens like this:

static gboolean gst_my_filter_setcaps (GstPad *pad,
GstCaps *caps);

static GstFlowReturn gst_my_filter_chain (GstPad *pad,
GstBuffer *buf);

static void
gst_my_filter_init (GstMyFilter *filter)
{
GstElementClass *klass = GST_ELEMENT_GET_CLASS (filter);

/* pad through which data comes in to the element */
filter->sinkpad = gst_pad_new_from_template (

gst_element_class_get_pad_template (klass, "sink"), "sink");
gst_pad_set_setcaps_function (filter->sinkpad, gst_my_filter_setcaps);
gst_pad_set_chain_function (filter->sinkpad, gst_my_filter_chain);

gst_element_add_pad (GST_ELEMENT (filter), filter->sinkpad);

/* pad through which data goes out of the element */
filter->srcpad = gst_pad_new_from_template (

gst_element_class_get_pad_template (klass, "src"), "src");

gst_element_add_pad (GST_ELEMENT (filter), filter->srcpad);

/* properties initial value */
filter->silent = FALSE;

}

The setcaps-function
The _setcaps ()-function is called during caps negotiation, which is discussed in
great detail in Caps negotiation. This is the process where the linked pads decide
on the streamtype that will transfer between them. A full list of type-definitions can
be found in Chapter 12. A _link () receives a pointer to a GstCaps1 struct that de-
fines the proposed streamtype, and can respond with either “yes” (TRUE) or “no”
(FALSE). If the element responds positively towards the streamtype, that type will be
used on the pad. An example:

17

Chapter 4. Specifying the pads

static gboolean
gst_my_filter_setcaps (GstPad *pad,

GstCaps *caps)
{
GstStructure *structure = gst_caps_get_structure (caps, 0);
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
const gchar *mime;

/* Since we’re an audio filter, we want to handle raw audio
* and from that audio type, we need to get the samplerate and
* number of channels. */

mime = gst_structure_get_name (structure);
if (strcmp (mime, "audio/x-raw-int") != 0) {

GST_WARNING ("Wrong mimetype %s provided, we only support %s",
mime, "audio/x-raw-int");
return FALSE;

}

/* we’re a filter and don’t touch the properties of the data.
* That means we can set the given caps unmodified on the next
* element, and use that negotiation return value as ours. */

if (!gst_pad_set_caps (filter->srcpad, caps))
return FALSE;

/* Capsnego succeeded, get the stream properties for internal
* usage and return success. */

gst_structure_get_int (structure, "rate", &filter->samplerate);
gst_structure_get_int (structure, "channels", &filter->channels);

g_print ("Caps negotiation succeeded with %d Hz @ %d channels\n",
filter->samplerate, filter->channels);

return TRUE;
}

In here, we check the mimetype of the provided caps. Normally, you don’t need to do
that in your own plugin/element, because the core does that for you. We simply use
it to show how to retrieve the mimetype from a provided set of caps. Types are stored
in GstStructure 2 internally. A GstCaps 3 is nothing more than a small wrapper for
0 or more structures/types. From the structure, you can also retrieve properties, as is
shown above with the function gst_structure_get_int ().
If your _link () function does not need to perform any specific operation (i.e. it
will only forward caps), you can set it to gst_pad_proxy_link (). This is a link
forwarding function implementation provided by the core. It is useful for elements
such as identity.

Notes
1. ../../gstreamer/html/gstreamer-GstCaps.html
2. ../../gstreamer/html/gstreamer-GstStructure.html
3. ../../gstreamer/html/gstreamer-GstCaps.html

18

Chapter 5. The chain function

The chain function is the function in which all data processing takes place. In the
case of a simple filter, _chain () functions are mostly linear functions - so for each
incoming buffer, one buffer will go out, too. Below is a very simple implementation
of a chain function:

static GstFlowReturn
gst_my_filter_chain (GstPad *pad,

GstBuffer *buf)
{
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

if (!filter->silent)
g_print ("Have data of size %u bytes!\n", GST_BUFFER_SIZE (buf));

return gst_pad_push (filter->srcpad, buf);
}

Obviously, the above doesn’t do much useful. Instead of printing that the data is in,
you would normally process the data there. Remember, however, that buffers are not
always writable. In more advanced elements (the ones that do event processing), you
may want to additionally specify an event handling function, which will be called
when stream-events are sent (such as end-of-stream, discontinuities, tags, etc.).

static void
gst_my_filter_init (GstMyFilter * filter)
{
[..]
gst_pad_set_event_function (filter->sinkpad,

gst_my_filter_event);
[..]
}

static gboolean
gst_my_filter_event (GstPad *pad,

GstEvent *event)
{
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:

/* end-of-stream, we should close down all stream leftovers here */
gst_my_filter_stop_processing (filter);
break;

default:
break;

}

return gst_pad_event_default (pad, event);
}

static GstFlowReturn
gst_my_filter_chain (GstPad *pad,

GstBuffer *buf)
{
GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
GstBuffer *outbuf;

outbuf = gst_my_filter_process_data (filter, buf);
gst_buffer_unref (buf);

19

Chapter 5. The chain function

if (!outbuf) {
/* something went wrong - signal an error */
GST_ELEMENT_ERROR (GST_ELEMENT (filter), STREAM, FAILED, (NULL), (NULL));
return GST_FLOW_ERROR;

}

return gst_pad_push (filter->srcpad, outbuf);
}

In some cases, it might be useful for an element to have control over the input data
rate, too. In that case, you probably want to write a so-called loop-based element.
Source elements (with only source pads) can also be get-based elements. These con-
cepts will be explained in the advanced section of this guide, and in the section that
specifically discusses source pads.

20

Chapter 6. What are states?

A state describes whether the element instance is initialized, whether it is ready to
transfer data and whether it is currently handling data. There are four states defined
in GStreamer:

• GST_STATE_NULL
• GST_STATE_READY
• GST_STATE_PAUSED
• GST_STATE_PLAYING
which will from now on be referred to simply as “NULL”, “READY”, “PAUSED”
and “PLAYING”.
GST_STATE_NULL is the default state of an element. In this state, it has not allocated
any runtime resources, it has not loaded any runtime libraries and it can obviously
not handle data.
GST_STATE_READY is the next state that an element can be in. In the READY state,
an element has all default resources (runtime-libraries, runtime-memory) allocated.
However, it has not yet allocated or defined anything that is stream-specific. When
going from NULL to READY state (GST_STATE_CHANGE_NULL_TO_READY),
an element should allocate any non-stream-specific resources and should load
runtime-loadable libraries (if any). When going the other way around (from READY
to NULL, GST_STATE_CHANGE_READY_TO_NULL), an element should unload
these libraries and free all allocated resources. Examples of such resources are
hardware devices. Note that files are generally streams, and these should thus be
considered as stream-specific resources; therefore, they should not be allocated in
this state.
GST_STATE_PAUSED is the state in which an element is ready to accept and handle
data. For most elements this state is the same as PLAYING. The only exception to this
rule are sink elements. Sink elements only accept one single buffer of data and then
block. At this point the pipeline is ’prerolled’ and ready to render data immediately.
GST_STATE_PLAYING is the highest state that an element can be in. For most ele-
ments this state is exactly the same as PAUSED, they accept and process events and
buffers with data. Only sink elements need to differentiate between PAUSED and
PLAYING state. In PLAYING state, sink elements actually render incoming data, e.g.
output audio to a sound card or render video pictures to an image sink.

Managing filter state
If at all possible, your element should derive from one of the new base classes
(Pre-made base classes). There are ready-made general purpose base classes for
different types of sources, sinks and filter/transformation elements. In addition to
those, specialised base classes exist for audio and video elements and others.
If you use a base class, you will rarely have to handle state changes yourself. All you
have to do is override the base class’s start() and stop() virtual functions (might be
called differently depending on the base class) and the base class will take care of
everything for you.
If, however, you do not derive from a ready-made base class, but from GstElement
or some other class not built on top of a base class, you will most likely have to
implement your own state change function to be notified of state changes. This is
definitively necessary if your plugin is a decoder or an encoder, as there are no base
classes for decoders or encoders yet.

21

Chapter 6. What are states?

An element can be notified of state changes through a virtual function pointer. In-
side this function, the element can initialize any sort of specific data needed by the
element, and it can optionally fail to go from one state to another.
Do not g_assert for unhandled state changes; this is taken care of by the GstElement
base class.

static GstStateChangeReturn
gst_my_filter_change_state (GstElement *element, GstStateChange transition);

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

element_class->change_state = gst_my_filter_change_state;
}

static GstStateChangeReturn
gst_my_filter_change_state (GstElement *element, GstStateChange transition)
{
GstStateChangeReturn ret = GST_STATE_CHANGE_SUCCESS;
GstMyFilter *filter = GST_MY_FILTER (element);

switch (transition) {
case GST_STATE_CHANGE_NULL_TO_READY:

if (!gst_my_filter_allocate_memory (filter))
return GST_STATE_CHANGE_FAILURE;

break;
default:

break;
}

ret = GST_ELEMENT_CLASS (parent_class)->change_state (element, transition);
if (ret == GST_STATE_CHANGE_FAILURE)

return ret;

switch (transition) {
case GST_STATE_CHANGE_READY_TO_NULL:

gst_my_filter_free_memory (filter);
break;

default:
break;

}

return ret;
}

Note that upwards (NULL=>READY, READY=>PAUSED, PAUSED=>PLAYING)
and downwards (PLAYING=>PAUSED, PAUSED=>READY, READY=>NULL)
state changes are handled in two separate blocks with the downwards state change
handled only after we have chained up to the parent class’s state change function.
This is necessary in order to safely handle concurrent access by multiple threads.
The reason for this is that in the case of downwards state changes you don’t want to
destroy allocated resources while your plugin’s chain function (for example) is still
accessing those resources in another thread. Whether your chain function might be
running or not depends on the state of your plugin’s pads, and the state of those pads
is closely linked to the state of the element. Pad states are handled in the GstElement
class’s state change function, including proper locking, that’s why it is essential to
chain up before destroying allocated resources.

22

Chapter 7. Adding Arguments

The primary and most important way of controlling how an element behaves, is
through GObject properties. GObject properties are defined in the _class_init
() function. The element optionally implements a _get_property () and a
_set_property () function. These functions will be notified if an application
changes or requests the value of a property, and can then fill in the value or take
action required for that property to change value internally.

/* properties */
enum {
ARG_0,
ARG_SILENT
/* FILL ME */

};

static void gst_my_filter_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec);

static void gst_my_filter_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec);

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);

/* define properties */
g_object_class_install_property (object_class, ARG_SILENT,

g_param_spec_boolean ("silent", "Silent",
"Whether to be very verbose or not",
FALSE, G_PARAM_READWRITE));

/* define virtual function pointers */
object_class->set_property = gst_my_filter_set_property;
object_class->get_property = gst_my_filter_get_property;

}

static void
gst_my_filter_set_property (GObject *object,

guint prop_id,
const GValue *value,
GParamSpec *pspec)

{
GstMyFilter *filter = GST_MY_FILTER (object);

switch (prop_id) {
case ARG_SILENT:

filter->silent = g_value_get_boolean (value);
g_print ("Silent argument was changed to %s\n",
filter->silent ? "true" : "false");

break;
default:

G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;

}
}

static void
gst_my_filter_get_property (GObject *object,

guint prop_id,

23

Chapter 7. Adding Arguments

GValue *value,
GParamSpec *pspec)

{
GstMyFilter *filter = GST_MY_FILTER (object);

switch (prop_id) {
case ARG_SILENT:

g_value_set_boolean (value, filter->silent);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;

}
}

The above is a very simple example of how arguments are used. Graphical applica-
tions - for example GStreamer Editor - will use these properties and will display a
user-controlleable widget with which these properties can be changed. This means
that - for the property to be as user-friendly as possible - you should be as exact as
possible in the definition of the property. Not only in defining ranges in between
which valid properties can be located (for integers, floats, etc.), but also in using very
descriptive (better yet: internationalized) strings in the definition of the property, and
if possible using enums and flags instead of integers. The GObject documentation
describes these in a very complete way, but below, we’ll give a short example of
where this is useful. Note that using integers here would probably completely con-
fuse the user, because they make no sense in this context. The example is stolen from
videotestsrc.

typedef enum {
GST_VIDEOTESTSRC_SMPTE,
GST_VIDEOTESTSRC_SNOW,
GST_VIDEOTESTSRC_BLACK

} GstVideotestsrcPattern;

[..]

#define GST_TYPE_VIDEOTESTSRC_PATTERN (gst_videotestsrc_pattern_get_type ())
static GType
gst_videotestsrc_pattern_get_type (void)
{
static GType videotestsrc_pattern_type = 0;

if (!videotestsrc_pattern_type) {
static GEnumValue pattern_types[] = {

{ GST_VIDEOTESTSRC_SMPTE, "smpte", "SMPTE 100% color bars" },
{ GST_VIDEOTESTSRC_SNOW, "snow", "Random (television snow)" },
{ GST_VIDEOTESTSRC_BLACK, "black", "0% Black" },
{ 0, NULL, NULL },

};

videotestsrc_pattern_type =
g_enum_register_static ("GstVideotestsrcPattern",

pattern_types);
}

return videotestsrc_pattern_type;
}

[..]

static void
gst_videotestsrc_class_init (GstvideotestsrcClass *klass)
{
[..]

24

Chapter 7. Adding Arguments

g_object_class_install_property (G_OBJECT_CLASS (klass), ARG_TYPE,
g_param_spec_enum ("pattern", "Pattern",

"Type of test pattern to generate",
GST_TYPE_VIDEOTESTSRC_PATTERN, 1, G_PARAM_READWRITE));

[..]
}

25

Chapter 7. Adding Arguments

26

Chapter 8. Signals

GObject signals can be used to notify applications of events specific to this object.
Note, however, that the application needs to be aware of signals and their meaning,
so if you’re looking for a generic way for application-element interaction, signals are
probably not what you’re looking for. In many cases, however, signals can be very
useful. See the GObject documentation1 for all internals about signals.

Notes
1. http://www.le-hacker.org/papers/gobject/index.html

27

Chapter 8. Signals

28

Chapter 9. Building a Test Application

Often, you will want to test your newly written plugin in an as small setting as pos-
sible. Usually, gst-launch is a good first step at testing a plugin. However, you will
often need more testing features than gst-launch can provide, such as seeking, events,
interactivity and more. Writing your own small testing program is the easiest way to
accomplish this. This section explains - in a few words - how to do that. For a com-
plete application development guide, see the Application Development Manual1.
At the start, you need to initialize the GStreamer core library by calling gst_init
(). You can alternatively call gst_init_with_popt_tables (), which will return a
pointer to popt tables. You can then use libpopt to handle the given argument table,
and this will finish the GStreamer intialization.
You can create elements using gst_element_factory_make (), where the first argu-
ment is the element type that you want to create, and the second argument is a free-
form name. The example at the end uses a simple filesource - decoder - soundcard
output pipeline, but you can use specific debugging elements if that’s necessary. For
example, an identity element can be used in the middle of the pipeline to act as a
data-to-application transmitter. This can be used to check the data for misbehaviours
or correctness in your test application. Also, you can use a fakesink element at the
end of the pipeline to dump your data to the stdout (in order to do this, set the dump
property to TRUE). Lastly, you can use the efence element (indeed, an eletric fence
memory debugger wrapper element) to check for memory errors.
During linking, your test application can use fixation or filtered caps as a way to drive
a specific type of data to or from your element. This is a very simple and effective way
of checking multiple types of input and output in your element.
Running the pipeline happens through the gst_bin_iterate () function. Note that
during running, you should connect to at least the “error” and “eos” signals on the
pipeline and/or your plugin/element to check for correct handling of this. Also, you
should add events into the pipeline and make sure your plugin handles these cor-
rectly (with respect to clocking, internal caching, etc.).
Never forget to clean up memory in your plugin or your test application. When go-
ing to the NULL state, your element should clean up allocated memory and caches.
Also, it should close down any references held to possible support libraries. Your
application should unref () the pipeline and make sure it doesn’t crash.

#include <gst/gst.h>

static gboolean
bus_call (GstBus *bus,

GstMessage *msg,
gpointer data)

{
GMainLoop *loop = data;

switch (GST_MESSAGE_TYPE (msg)) {
case GST_MESSAGE_EOS:

g_print ("End-of-stream\n");
g_main_loop_quit (loop);
break;

case GST_MESSAGE_ERROR: {
gchar *debug;
GError *err;

gst_message_parse_error (msg, &err, &debug);
g_free (debug);

g_print ("Error: %s\n", err->message);
g_error_free (err);

g_main_loop_quit (loop);

29

Chapter 9. Building a Test Application

break;
}
default:

break;
}

return TRUE;
}

gint
main (gint argc,

gchar *argv[])
{
GstElement *pipeline, *filesrc, *decoder, *filter, *sink;
GMainLoop *loop;

/* initialization */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);
if (argc != 2) {

g_print ("Usage: %s <mp3 filename>\n", argv[0]);
return 01;

}

/* create elements */
pipeline = gst_pipeline_new ("my_pipeline");
gst_bus_add_watch (gst_pipeline_get_bus (GST_PIPELINE (pipeline)),

bus_call, loop);

filesrc = gst_element_factory_make ("filesrc", "my_filesource");
decoder = gst_element_factory_make ("mad", "my_decoder");
filter = gst_element_factory_make ("my_filter", "my_filter");
sink = gst_element_factory_make ("osssink", "audiosink");
if (!sink || !decoder) {

g_print ("Decoder or output could not be found - check your install\n");
return -1;

} else if (!filter) {
g_print ("Your self-written filter could not be found. Make sure it "

"is installed correctly in $(libdir)/gstreamer-0.9/ and that "
"you’ve ran gst-register-0.9 to register it. Check availability "
"of the plugin afterwards using \"gst-inspect-0.9 my_filter\"");

return -1;
}

g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

/* link everything together */
gst_element_link_many (filesrc, decoder, filter, sink, NULL);
gst_bin_add_many (GST_BIN (pipeline), filesrc, decoder, filter, sink, NULL);

/* run */
gst_element_set_state (pipeline, GST_STATE_PLAYING);
g_main_loop_run (loop);

/* clean up */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

Notes
1. ../../manual/html/index.html

30

Chapter 10. Caps negotiation

Caps negotiation is the process where elements configure themselves and each other
for streaming a particular media format over their pads. Since different types of ele-
ments have different requirements for the media formats they can negotiate to, it is
important that this process is generic and implements all those use cases correctly.
In this chapter, we will discuss downstream negotiation and upstream negotiation
from a pipeline perspective, implicating the responsibilities of different types of ele-
ments in a pipeline, and we will introduce the concept of fixed caps.

Caps negotiation use cases
Let’s take the case of a file source, linked to a demuxer, linked to a decoder, linked to
a converter with a caps filter and finally an audio output. When dataflow originally
starts, the demuxer will parse the file header (e.g. the Ogg headers), and notice that
there is, for example, a Vorbis stream in this Ogg file. Noticing that, it will create an
output pad for the Vorbis elementary stream and set a Vorbis-caps on it. Lastly, it
adds the pad. As of this point, the pad is ready to be used to stream data, and so the
Ogg demuxer is now done. This pad is not re-negotiatable, since the type of the data
stream is embedded within the data.
The Vorbis decoder will decode the Vorbis headers and the Vorbis data coming in on
its sinkpad. Now, some decoders may be able to output in multiple output formats,
for example both 16-bit integer output and floating-point output, whereas other de-
coders may be able to only decode into one specific format, e.g. only floating-point
(32-bit) audio. Those two cases have consequences for how caps negotiation should
be implemented in this decoder element. In the one case, it is possible to use fixed
caps, and you’re done. In the other case, however, you should implement the possi-
bility for renegotiation in this element, which is the possibility for the data format to
be changed to another format at some point in the future. We will discuss how to do
this in one of the sections further on in this chapter.
The filter can be used by applications to force, for example, a specific channel configu-
ration (5.1/surround or 2.0/stereo), on the pipeline, so that the user can enjoy sound
coming from all its speakers. The audio sink, in this example, is a standard ALSA
output element (alsasink). The converter element supports any-to-any, and the filter
will make sure that only a specifically wanted channel configuration streams through
this link (as provided by the user’s channel configuration preference). By changing
this preference while the pipeline is running, some elements will have to renegotiate
while the pipeline is running. This is done through upstream caps renegotiation. That,
too, will be discussed in detail in a section further below.
In order for caps negotiation on non-fixed links to work correctly, pads can option-
ally implement a function that tells peer elements what formats it supports and/or
preferes. When upstream renegotiation is triggered, this becomes important.
Downstream elements are notified of a newly set caps only when data is actually
passing their pad. This is because caps is attached to buffers during dataflow. So
when the vorbis decoder sets a caps on its source pad (to configure the output for-
mat), the converter will not yet be notified. Instead, the converter will only be notified
when the decoder pushes a buffer over its source pad to the converter. Right before
calling the chain-function in the converter, GStreamer will check whether the for-
mat that was previously negotiated still applies to this buffer. If not, it first calls the
setcaps-function of the converter to configure it for the new format. Only after that
will it call the chain function of the converter.

Fixed caps
The simplest way in which to do caps negotiation is setting a fixed caps on a pad.

31

Chapter 10. Caps negotiation

After a fixed caps has been set, the pad can not be renegotiated from the outside. The
only way to reconfigure the pad is for the element owning the pad to set a new fixed
caps on the pad. Fixed caps is a setup property for pads, called when creating the
pad:

[..]
pad = gst_pad_new_from_template (..);
gst_pad_use_fixed_caps (pad);

[..]

The fixed caps can then be set on the pad by calling gst_pad_set_caps ().

[..]
caps = gst_caps_new_simple ("audio/x-raw-float",

"width", G_TYPE_INT, 32,
"endianness", G_TYPE_INT, G_BYTE_ORDER,
"buffer-frames", G_TYPE_INT, <bytes-per-frame>,
"rate", G_TYPE_INT, <samplerate>,
"channels", G_TYPE_INT, <num-channels>, NULL);

if (!gst_pad_set_caps (pad, caps)) {
GST_ELEMENT_ERROR (element, CORE, NEGOTIATION, (NULL),

("Some debug information here"));
return GST_FLOW_ERROR;

}
[..]

Elements that could implement fixed caps (on their source pads) are, in general, all
elements that are not renegotiatable. Examples include:

• A typefinder, since the type found is part of the actual data stream and can thus
not be re-negotiated.

• Pretty much all demuxers, since the contained elementary data streams are defined
in the file headers, and thus not renegotiatable.

• Some decoders, where the format is embedded in the datastream and not part of
the peercaps and where the decoder itself is not reconfigureable, too.

All other elements that need to be configured for the format should implement full
caps negotiation, which will be explained in the next few sections.

Downstream caps negotiation
Downstream negotiation takes place when a format needs to be set on a source pad
to configure the output format, but this element allows renegotiation because its for-
mat is configured on the sinkpad caps, or because it supports multiple formats. The
requirements for doing the actual negotiation differ slightly.

Negotiating caps embedded in input caps
Many elements, particularly effects and converters, will be able to parse the format of
the stream from their input caps, and decide the output format right at that time al-
ready. When renegotiation takes place, some may merely need to "forward" the rene-
gotiation backwards upstream (more on that later). For those elements, all (down-
stream) caps negotiation can be done in something that we call the _setcaps ()
function. This function is called when a buffer is pushed over a pad, but the format
on this buffer is not the same as the format that was previously negotiated (or, simi-
larly, no format was negotiated yet so far).

32

Chapter 10. Caps negotiation

In the _setcaps ()-function, the element can forward the caps to the next element
and, if that pad accepts the format too, the element can parse the relevant parame-
ters from the caps and configure itself internally. The caps passed to this function is
always a subset of the template caps, so there’s no need for extensive safety checking.
The following example should give a clear indication of how such a function can be
implemented:

static gboolean
gst_my_filter_setcaps (GstPad *pad,

GstCaps *caps)
{
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
GstStructure *s;

/* forward-negotiate */
if (!gst_pad_set_caps (filter->srcpad, caps))

return FALSE;

/* negotiation succeeded, so now configure ourselves */
s = gst_caps_get_structure (caps, 0);
gst_structure_get_int (s, "rate", &filter->samplerate);
gst_structure_get_int (s, "channels", &filter->channels);

return TRUE;
}

There may also be cases where the filter actually is able to change the format
of the stream. In those cases, it will negotiate a new format. Obviously, the
element should first attempt to configure “pass-through”, which means that
it does not change the stream’s format. However, if that fails, then it should call
gst_pad_get_allowed_caps () on its sourcepad to get a list of supported formats
on the outputs, and pick the first. The return value of that function is guaranteed to
be a subset of the template caps.
Let’s look at the example of an element that can convert between samplerates, so
where input and output samplerate don’t have to be the same:

static gboolean
gst_my_filter_setcaps (GstPad *pad,

GstCaps *caps)
{
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

if (gst_pad_set_caps (filter->sinkpad, caps)) {
filter->passthrough = TRUE;

} else {
GstCaps *othercaps, *newcaps;
GstStructure *s = gst_caps_get_structure (caps, 0), *others;

/* no passthrough, setup internal conversion */
gst_structure_get_int (s, "channels", &filter->channels);
othercaps = gst_pad_get_allowed_caps (filter->srcpad);
others = gst_caps_get_structure (othercaps, 0);
gst_structure_set (others,

"channels", G_TYPE_INT, filter->channels, NULL);

/* now, the samplerate value can optionally have multiple values, so
* we "fixate" it, which means that one fixed value is chosen */

newcaps = gst_caps_copy_nth (othercaps, 0);
gst_caps_unref (othercaps);
gst_pad_fixate_caps (filter->srcpad, newcaps);
if (!gst_pad_set_caps (filter->srcpad, newcaps))

33

Chapter 10. Caps negotiation

return FALSE;

/* we are now set up, configure internally */
filter->passthrough = FALSE;
gst_structure_get_int (s, "rate", &filter->from_samplerate);
others = gst_caps_get_structure (newcaps, 0);
gst_structure_get_int (others, "rate", &filter->to_samplerate);

}

return TRUE;
}

static GstFlowReturn
gst_my_filter_chain (GstPad *pad,

GstBuffer *buf)
{
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
GstBuffer *out;

/* push on if in passthrough mode */
if (filter->passthrough)

return gst_pad_push (filter->srcpad, buf);

/* convert, push */
out = gst_my_filter_convert (filter, buf);
gst_buffer_unref (buf);

return gst_pad_push (filter->srcpad, out);
}

Parsing and setting caps
Other elements, such as certain types of decoders, will not be able to parse the caps
from their input, simply because the input format does not contain the information
required to know the output format yet; rather, the data headers need to be parsed,
too. In many cases, fixed-caps will be enough, but in some cases, particularly in cases
where such decoders are renegotiatable, it is also possible to use full caps negotiation.
Fortunately, the code required to do so is very similar to the last code example in
Negotiating caps embedded in input caps, with the difference being that the caps is
selected in the _chain ()-function rather than in the _setcaps ()-function. The
rest, as for getting all allowed caps from the source pad, fixating and such, is all
the same. Re-negotiation, which will be handled in the next section, is very different
for such elements, though.

Upstream caps (re)negotiation
Upstream negotiation’s primary use is to renegotiate (part of) an already-negotiated
pipeline to a new format. Some practical examples include to select a different video
size because the size of the video window changed, and the video output itself is not
capable of rescaling, or because the audio channel configuration changed.
Upstream caps renegotiation is done in the gst_pad_alloc_buffer ()-function.
The idea here is that an element requesting a buffer from downstream, has to specify
the type of that buffer. If renegotiation is to take place, this type will no longer
apply, and the downstream element will set a new caps on the provided buffer. The
element should then reconfigure itself to push buffers with the returned caps. The
source pad’s setcaps will be called once the buffer is pushed.

34

Chapter 10. Caps negotiation

It is important to note here that different elements actually have different responsi-
bilities here:

• Elements should implement a “padalloc”-function in order to be able to change
format on renegotiation. This is also true for filters and converters.

• Elements should allocate new buffers using gst_pad_alloc_buffer ().
• Elements that are renegotiatable should implement a “setcaps”-function on their

sourcepad as well.
Unfortunately, not all details here have been worked out yet, so this documentation
is incomplete. FIXME.

Implementing a getcaps function
A _getcaps ()-function is called when a peer element would like to know which
formats this element supports, and in what order of preference. The return value
should be all formats that this elements supports, taking into account limitations
of peer elements further downstream or upstream, sorted by order of preference,
highest preference first.

static GstCaps *
gst_my_filter_getcaps (GstPad *pad)
{
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
GstPad *otherpad = (pad == filter->srcpad) ? filter->sinkpad :

filter->srcpad;
GstCaps *othercaps = gst_pad_get_allowed_caps (otherpad), *caps;
gint i;

/* We support *any* samplerate, indifferent from the samplerate
* supported by the linked elements on both sides. */

for (i = 0; i < gst_caps_get_size (othercaps); i++) {
GstStructure *structure = gst_caps_get_structure (othercaps, i);

gst_structure_remove_field (structure, "rate");
}
caps = gst_caps_intersect (othercaps, gst_pad_get_pad_template_caps (pad));
gst_caps_unref (othercaps);

return caps;
}

Using all the knowledge you’ve acquired by reading this chapter, you should be able
to write an element that does correct caps negotiation. If in doubt, look at other ele-
ments of the same type in our CVS repository to get an idea of how they do what you
want to do.

35

Chapter 10. Caps negotiation

36

Chapter 11. Different scheduling modes

Scheduling is, in short, a method for making sure that every element gets called once
in a while to process data and prepare data for the next element. Likewise, a kernel
has a scheduler to for processes, and your brain is a very complex scheduler too in
a way. Randomly calling elements’ chain functions won’t bring us far, however, so
you’ll understand that the schedulers in GStreamer are a bit more complex than this.
However, as a start, it’s a nice picture.
So far, we have only discussed _chain ()-operating elements, i.e. elements that have
a chain-function set on their sinkpad and push buffers on their sinkpad. Pads (or ele-
ments) can also operate in two other scheduling modes, however. In this chapter, we
will discuss what those scheduling modes are, how they can be enabled and in what
cases they are useful. The other two scheduling modes are random access (_getrange
()-based) or task-runner (which means that this element is the driving force in the
pipeline) mode.

The pad activation stage
The stage in which GStreamer decides in what scheduling mode the various ele-
ments will operate, is called the pad-activation stage. In this stage, GStreamer will
query the scheduling capabilities (i.e. it will see in what modes each particular el-
ement/pad can operate) and decide on the optimal scheduling composition for the
pipeline. Next, each pad will be notified of the scheduling mode that was assigned
to it, and after that the pipeline will start running.
Pads can be assigned one of three modes, each mode putting
several prerequisites on the pads. Pads should implement a
notification function (gst_pad_set_activatepull_function () and
gst_pad_set_activatepush_function ()) to be notified of the scheduling mode
assignment. Also, sinkpads assigned to do pull-based scheduling mode should start
and stop their task in this function.

• If all pads of an element are assigned to do “push”-based scheduling, then this
means that data will be pushed by upstream elements to this element using the
sinkpads _chain ()-function. Prerequisites for this scheduling mode are that a
chain-function was set for each sinkpad usinggst_pad_set_chain_function ()
and that all downstream elements operate in the same mode. Pads are assigned to
do push-based scheduling in sink-to-source element order, and within an element
first sourcepads and then sinkpads. Sink elements can operate in this mode if their
sinkpad is activated for push-based scheduling. Source elements cannot be chain-
based.

• Alternatively, sinkpads can be the driving force behind a pipeline by operating
in “pull”-based mode, while the sourcepads of the element still operate in push-
based mode. In order to be the driving force, those pads start a GstTask when
their pads are being activated. This task is a thread, which will call a function
specified by the element. When called, this function will have random data ac-
cess (through gst_pad_get_range ()) over all sinkpads, and can push data over
the sourcepads, which effectively means that this element controls dataflow in the
pipeline. Prerequisites for this mode are that all downstream elements can act in
chain-based mode, and that all upstream elements allow random access (see be-
low). Source elements can be told to act in this mode if their sourcepads are acti-
vated in push-based fashion. Sink elements can be told to act in this mode when
their sinkpads are activated in pull-mode.

• lastly, all pads in an element can be assigned to act in pull-mode. too. However,
contrary to the above, this does not mean that they start a task on their own.
Rather, it means that they are pull slave for the downstream element, and have to
provide random data access to it from their _get_range ()-function. Requireme-

37

Chapter 11. Different scheduling modes

nents are that the a _get_range ()-function was set on this pad using the function
gst_pad_set_getrange_function (). Also, if the element has any sinkpads, all
those pads (and thereby their peers) need to operate in random access mode, too.
Note that the element is supposed to activate those elements itself! GStreamer will
not do that for you.

In the next two sections, we will go closer into pull-based scheduling (elements/pads
driving the pipeline, and elements/pads providing random access), and some spe-
cific use cases will be given.

Pads driving the pipeline
Sinkpads assigned to operate in pull-based mode, while none of its sourcepads op-
erate in pull-based mode (or it has no sourcepads), can start a task that will drive the
pipeline dataflow. Within this function, those elements have random access over all
of their sinkpads, and push data over their sourcepads. This can come in useful for
several different kinds of elements:

• Demuxers, parsers and certain kinds of decoders where data comes in unparsed
(such as MPEG-audio or video streams), since those will prefer byte-exact (ran-
dom) access from their input. If possible, however, such elements should be pre-
pared to operate in chain-based mode, too.

• Certain kind of audio outputs, which require control over their input dataflow,
such as the Jack sound server.

In order to start this task, you will need to create it in the activation function.

#include "filter.h"
#include <string.h>

static gboolean gst_my_filter_activate (GstPad * pad);
static gboolean gst_my_filter_activate_pull (GstPad * pad,

gboolean active);
static void gst_my_filter_loop (GstMyFilter * filter);

GST_BOILERPLATE (GstMyFilter, gst_my_filter, GstElement, GST_TYPE_ELEMENT);

static void
gst_my_filter_init (GstMyFilter * filter)
{

[..]

gst_pad_set_activate_function (filter->sinkpad, gst_my_filter_activate);
gst_pad_set_activatepull_function (filter->sinkpad,

gst_my_filter_activate_pull);

[..]
}

[..]

static gboolean
gst_my_filter_activate (GstPad * pad)
{
if (gst_pad_check_pull_range (pad)) {

return gst_pad_activate_pull (pad, TRUE);
} else {

return FALSE;

38

Chapter 11. Different scheduling modes

}
}

static gboolean
gst_my_filter_activate_pull (GstPad *pad,

gboolean active)
{
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

if (active) {
filter->offset = 0;
return gst_pad_start_task (pad,

(GstTaskFunction) gst_my_filter_loop, filter);
} else {

return gst_pad_stop_task (pad);
}

}

Once started, your task has full control over input and output. The most simple case
of a task function is one that reads input and pushes that over its source pad. It’s not
all that useful, but provides some more flexibility than the old chain-based case that
we’ve been looking at so far.

#define BLOCKSIZE 2048

static void
gst_my_filter_loop (GstMyFilter * filter)
{
guint64 len;
GstFormat fmt = GST_FORMAT_BYTES;
GstBuffer *buf = NULL;

if (!gst_pad_query_position (filter->sinkpad, &fmt, NULL, &len)) {
goto stop;

} else if (filter->offset >= len) {
gst_pad_push_event (filter->sinkpad, gst_event_new (GST_EVENT_EOS));

} else if (gst_pad_pull_range (filter->sinkpad, filter->offset,
BLOCKSIZE, &buf) != GST_FLOW_OK ||
gst_pad_push (filter->sinkpad, buf) != GST_FLOW_OK) {

goto stop;
} else {

filter->offset += BLOCKSIZE;
return;

}

stop:
gst_pad_pause_task (filter->sinkpad);

}

Providing random access
In the previous section, we have talked about how elements (or pads) that are as-
signed to drive the pipeline using their own task, have random access over their
sinkpads. This means that all elements linked to those pads (recursively) need to
provide random access functions. Requesting random access is done using the func-
tion gst_pad_pull_range (), which requests a buffer of a specified size and offset.
Source pads implementing and assigned to do random access will have a _get_range
()-function set using gst_pad_set_getrange_function (), and that function will
be called when the peer pad requests some data. The element is then responsible for

39

Chapter 11. Different scheduling modes

seeking to the right offset and providing the requested data. Several elements can
implement random access:

• Data sources, such as a file source, that can provide data from any offset with rea-
sonable low latency.

• Filters that would like to provide a pull-based-like scheduling mode over
the whole pipeline. Note that elements assigned to do random access-based
scheduling are themselves responsible for assigning this scheduling mode to their
upstream peers! GStreamer will not do that for you.

• Parsers who can easily provide this by skipping a small part of their input and are
thus essentially "forwarding" random access requests literally without any own
processing involved. Examples include tag readers (e.g. ID3) or single output
parsers, such as a WAVE parser.

The following example will show how a _get_range ()-function can be
implemented in a source element:

#include "filter.h"
static GstFlowReturn
gst_my_filter_get_range (GstPad * pad,

guint64 offset,
guint length,
GstBuffer ** buf);

GST_BOILERPLATE (GstMyFilter, gst_my_filter, GstElement, GST_TYPE_ELEMENT);

static void
gst_my_filter_init (GstMyFilter * filter)
{
GstElementClass *klass = GST_ELEMENT_GET_CLASS (filter);

filter->srcpad = gst_pad_new_from_template (
gst_element_class_get_pad_template (klass, "src"), "src");

gst_pad_set_getrange_function (filter->srcpad,
gst_my_filter_get_range);

gst_element_add_pad (GST_ELEMENT (filter), filter->srcpad);

[..]
}

static gboolean
gst_my_filter_get_range (GstPad * pad,

guint64 offset,
guint length,
GstBuffer ** buf)

{

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

[.. here, you would fill *buf ..]

return GST_FLOW_OK;
}

In practice, many elements that could theoretically do random access, may in practice
often be assigned to do push-based scheduling anyway, since there is no downstream
element able to start its own task. Therefore, in practice, those elements should im-
plement both a _get_range ()-function and a _chain ()-function (for filters and
parsers) or a _get_range ()-function and be prepared to start their own task by

40

Chapter 11. Different scheduling modes

providing _activate_* ()-functions (for source elements), so that GStreamer can
decide for the optimal scheduling mode and have it just work fine in practice.

41

Chapter 11. Different scheduling modes

42

Chapter 12. Types and Properties

There is a very large set of possible types that may be used to pass data between ele-
ments. Indeed, each new element that is defined may use a new data format (though
unless at least one other element recognises that format, it will be most likely be use-
less since nothing will be able to link with it).
In order for types to be useful, and for systems like autopluggers to work, it is neces-
sary that all elements agree on the type definitions, and which properties are required
for each type. The GStreamer framework itself simply provides the ability to define
types and parameters, but does not fix the meaning of types and parameters, and
does not enforce standards on the creation of new types. This is a matter for a policy
to decide, not technical systems to enforce.
For now, the policy is simple:

• Do not create a new type if you could use one which already exists.
• If creating a new type, discuss it first with the other GStreamer developers, on at

least one of: IRC, mailing lists.
• Try to ensure that the name for a new format is as unlikely to conflict with any-

thing else created already, and is not a more generalised name than it should be.
For example: "audio/compressed" would be too generalised a name to represent
audio data compressed with an mp3 codec. Instead "audio/mp3" might be an ap-
propriate name, or "audio/compressed" could exist and have a property indicating
the type of compression used.

• Ensure that, when you do create a new type, you specify it clearly, and get it added
to the list of known types so that other developers can use the type correctly when
writing their elements.

Building a Simple Format for Testing
If you need a new format that has not yet been defined in our List of Defined Types,
you will want to have some general guidelines on mimetype naming, properties and
such. A mimetype would ideally be one defined by IANA; else, it should be in the
form type/x-name, where type is the sort of data this mimetype handles (audio,
video, ...) and name should be something specific for this specific type. Audio and
video mimetypes should try to support the general audio/video properties (see the
list), and can use their own properties, too. To get an idea of what properties we think
are useful, see (again) the list.
Take your time to find the right set of properties for your type. There is no reason to
hurry. Also, experimenting with this is generally a good idea. Experience learns that
theoretically thought-out types are good, but they still need practical use to assure
that they serve their needs. Make sure that your property names do not clash with
similar properties used in other types. If they match, make sure they mean the same
thing; properties with different types but the same names are not allowed.

Typefind Functions and Autoplugging
With only defining the types, we’re not yet there. In order for a random data file to
be recognized and played back as such, we need a way of recognizing their type
out of the blue. For this purpose, “typefinding” was introduced. Typefinding is the
process of detecting the type of a datastream. Typefinding consists of two separate
parts: first, there’s an unlimited number of functions that we call typefind functions,
which are each able to recognize one or more types from an input stream. Then,
secondly, there’s a small engine which registers and calls each of those functions.

43

Chapter 12. Types and Properties

This is the typefind core. On top of this typefind core, you would normally write an
autoplugger, which is able to use this type detection system to dynamically build a
pipeline around an input stream. Here, we will focus only on typefind functions.
A typefind function ususally lives in gst-plugins/gst/typefind/gsttypefindfunctions.c,
unless there’s a good reason (like library dependencies) to put it elsewhere. The
reason for this centralization is to decreate the number of plugins that need to be
loaded in order to detect a stream’s type. Below is an example that will recognize
AVI files, which start with a “RIFF” tag, then the size of the file and then an “AVI ”
tag:

static void
gst_my_typefind_function (GstTypeFind *tf,

gpointer data)
{
guint8 *data = gst_type_find_peek (tf, 0, 12);

if (data &&
GUINT32_FROM_LE (&((guint32 *) data)[0]) == GST_MAKE_FOURCC (’R’,’I’,’F’,’F’) &&
GUINT32_FROM_LE (&((guint32 *) data)[2]) == GST_MAKE_FOURCC (’A’,’V’,’I’,’ ’)) {

gst_type_find_suggest (tf, GST_TYPE_FIND_MAXIMUM,
gst_caps_new_simple ("video/x-msvideo", NULL));

}
}

static gboolean
plugin_init (GstPlugin *plugin)
{
static gchar *exts[] = { "avi", NULL };
if (!gst_type_find_register (plugin, "", GST_RANK_PRIMARY,

gst_my_typefind_function, exts,
gst_caps_new_simple ("video/x-msvideo",
NULL), NULL))

return FALSE;
}

Note that gst-plugins/gst/typefind/gsttypefindfunctions.chas some simpli-
fication macros to decrease the amount of code. Make good use of those if you want
to submit typefinding patches with new typefind functions.
Autoplugging has been discussed in great detail in the Application Development
Manual.

List of Defined Types
Below is a list of all the defined types in GStreamer. They are split up in separate
tables for audio, video, container, subtitle and other types, for the sake of readability.
Below each table might follow a list of notes that apply to that table. In the definition
of each type, we try to follow the types and rules as defined by IANA1 for as far as
possible.
Jump directly to a specific table:

• Table of Audio Types
• Table of Video Types
• Table of Container Types
• Table of Subtitle Types
• Table of Other Types

44

Chapter 12. Types and Properties

Note that many of the properties are not required, but rather optional properties. This
means that most of these properties can be extracted from the container header, but
that - in case the container header does not provide these - they can also be extracted
by parsing the stream header or the stream content. The policy is that your element
should provide the data that it knows about by only parsing its own content, not
another element’s content. Example: the AVI header provides samplerate of the con-
tained audio stream in the header. MPEG system streams don’t. This means that
an AVI stream demuxer would provide samplerate as a property for MPEG audio
streams, whereas an MPEG demuxer would not. A decoder needing this data would
require a stream parser in between two extract this from the header or calculate it
from the stream.

Table 12-1. Table of Audio Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

All audio types.
audio/* All

audio
types

rate integer greater
than 0

The sample rate of the data, in samples (per
channel) per second.

channelsinteger greater
than 0

The number of channels of audio data.

All raw audio types.
audio/x-
raw-
int

Un-
struc-
tured
and
un-
com-
pressed
raw
fixed-
integer
audio
data.

endiannessinteger G_BIG_ENDIAN
(1234)
or
G_LITTLE_ENDIAN
(4321)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (4321) means
“little-endian” (byte-order is “least
significant byte first”). The value
G_BIG_ENDIAN (1234) means “big-endian”
(byte order is “most significant byte first”).

signed booleanTRUE
or
FALSE

Whether the values of the integer samples
are signed or not. Signed samples use one
bit to indicate sign (negative or positive) of
the value. Unsigned samples are always
positive.

width integer greater
than 0

Number of bits allocated per sample.

depth integer greater
than 0

The number of bits used per sample. This
must be less than or equal to the width: If
the depth is less than the width, the low bits
are assumed to be the ones used. For
example, a width of 32 and a depth of 24
means that each sample is stored in a 32 bit
word, but only the low 24 bits are actually
used.

45

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

audio/x-
raw-
float

Un-
struc-
tured
and
un-
com-
pressed
raw
floating-
point
audio
data.

endiannessinteger G_BIG_ENDIAN
(1234)
or
G_LITTLE_ENDIAN
(4321)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (4321) means
“little-endian” (byte-order is “least
significant byte first”). The value
G_BIG_ENDIAN (1234) means “big-endian”
(byte order is “most significant byte first”).

width integer greater
than 0

The
amount
of bits
used
and
allo-
cated
per
sam-
ple.

All encoded audio types.
audio/x-
ac3

AC-3
or
A52
audio
streams.

There are currently no specific properties
defined or needed for this type.

audio/x-
adpcm

ADPCM
Au-
dio
streams.

layout string
“quick-
time”,
“dvi”,
“mi-
crosoft”
or
“4xm”.

The layout defines the packing of the
samples in the stream. In ADPCM, most
formats store multiple samples per channel
together. This number of samples differs per
format, hence the different layouts. On the
long term, we probably want this variable to
die and use something more descriptive, but
this will do for now.

block_aligninteger Any Chunk buffer size.

audio/x-
cinepak

Audio
as
pro-
vided
in a
Cinepak
(Quick-
time)
stream.

There are currently no specific properties
defined or needed for this type.

46

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

audio/x-
dv

Audio
as
pro-
vided
in a
Digi-
tal
Video
stream.

There are currently no specific properties
defined or needed for this type.

audio/x-
flac

Free
Loss-
less
Au-
dio
codec
(FLAC).

There are currently no specific properties
defined or needed for this type.

audio/x-
gsm

Data
en-
coded
by the
GSM
codec.

There are currently no specific properties
defined or needed for this type.

audio/x-
alaw

A-
Law
Au-
dio.

There are currently no specific properties
defined or needed for this type.

audio/x-
mulaw

Mu-
Law
Au-
dio.

There are currently no specific properties
defined or needed for this type.

audio/x-
mace

MACE
Au-
dio
(used
in
Quick-
time).

maceversioninteger 3 or 6 The version of the MACE audio codec used
to encode the stream.

audio/mpegAu-
dio
data
com-
pressed
using
the
MPEG
audio
en-
cod-
ing
sce-
hem.

mpegversioninteger 1, 2 or
4

The MPEG-version used for encoding the
data. The value 1 refers to MPEG-1, -2 and
-2.5 layer 1, 2 or 3. The values 2 and 4 refer to
the MPEG-AAC audio encoding schemes.

framed boolean0 or 1 A true value indicates that each buffer
contains exactly one frame. A false value
indicates that frames and buffers do not
necessarily match up.

47

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

layer integer 1, 2,
or 3

The compression scheme layer used to
compress the data (only if mpegversion=1).

bitrate integer greater
than 0

The bitrate, in bits per second. For VBR
(variable bitrate) MPEG data, this is the
average bitrate.

audio/x-
qdm2

Data
en-
coded
by the
QDM
ver-
sion 2
codec.

There are currently no specific properties
defined or needed for this type.

audio/x-
pn-
realaudio

Realmedia
Au-
dio
data.

raversioninteger 1 or 2 The version of the Real Audio codec used to
encode the stream. 1 stands for a 14k4
stream, 2 stands for a 28k8 stream.

audio/x-
speex

Data
en-
coded
by the
Speex
audio
codec

There are currently no specific properties
defined or needed for this type.

audio/x-
vorbis

Vorbis
audio
data

There are currently no specific properties
defined or needed for this type.

audio/x-
wma

Windows
Me-
dia
Au-
dio

wmaversioninteger 1,2 or
3

The version of the WMA codec used to
encode the stream.

audio/x-
paris

Ensoniq
PARIS
audio

There are currently no specific properties
defined or needed for this type.

audio/x-
svx

Amiga
IFF /
SVX8
/
SV16
audio

There are currently no specific properties
defined or needed for this type.

audio/x-
nist

Sphere
NIST
audio

There are currently no specific properties
defined or needed for this type.

48

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

audio/x-
voc

Sound
Blaster
VOC
audio

There are currently no specific properties
defined or needed for this type.

audio/x-
ircam

Berkeley/IRCAM/CARL
audio

There are currently no specific properties
defined or needed for this type.

audio/x-
w64

Sonic
Foundry’s
64 bit
RIFF/WAV

There are currently no specific properties
defined or needed for this type.

Table 12-2. Table of Video Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

All video types.
video/* All

video
types

width integer greater
than 0

The width of the video image

height integer greater
than 0

The height of the video image

frameratefractiongreater
or
equal
0

The (average) framerate in frames per
second. Note that this property does not
guarantee in any way that it will actually
come close to this value. If you need a fixed
framerate, please use an element that
provides that (such as “videodrop”). 0
means a variable framerate.

All raw video types.
video/x-
raw-
yuv

YUV
(or
Y’Cb’Cr)
video
for-
mat.

format fourcc
YUY2,
YVYU,
UYVY,
Y41P,
IYU2,
Y42B,
YV12,
I420,
Y41B,
YUV9,
YVU9,
Y800

The layout of the video. See FourCC
definition site2 for references and
definitions. YUY2, YVYU and UYVY are
4:2:2 packed-pixel, Y41P is 4:1:1
packed-pixel and IYU2 is 4:4:4 packed-pixel.
Y42B is 4:2:2 planar, YV12 and I420 are 4:2:0
planar, Y41B is 4:1:1 planar and YUV9 and
YVU9 are 4:1:0 planar. Y800 contains
Y-samples only (black/white).

video/x-
raw-
rgb

Red-
Green-
Blue
(RBG)
video.

bpp integer greater
than 0

The number of bits allocated per pixel. This
is usually 16, 24 or 32.

49

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

depth integer greater
than 0

The number of bits used per pixel by the
R/G/B components. This is usually 15, 16 or
24.

endiannessinteger G_BIG_ENDIAN
(1234)
or
G_LITTLE_ENDIAN
(4321)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (4321) means
“little-endian” (byte-order is “least
significant byte first”). The value
G_BIG_ENDIAN (1234) means “big-endian”
(byte order is “most significant byte first”).
For 24/32bpp, this should always be big
endian because the byte order can be given
in both.

red_mask,
green_mask
and
blue_mask

integer any The masks that cover all the bits used by
each of the samples. The mask should be
given in the endianness specified above.
This means that for 24/32bpp, the masks
might be opposite to host byte order (if you
are working on little-endian computers).

All encoded video types.
video/x-
3ivx

3ivx
video.

There are currently no specific properties
defined or needed for this type.

video/x-
divx

DivX
video.

divxversioninteger 3, 4 or
5

Version of the DivX codec used to encode
the stream.

video/x-
dx

Digital
Video.

systemstreambooleanFALSE Indicates that this stream is not a system
container stream.

video/x-
ffv

FFMpeg
video.

ffvversioninteger 1 Version of the FFMpeg video codec used to
encode the stream.

video/x-
h263

H-263
video.

There are currently no specific properties
defined or needed for this type.

video/x-
h264

H-264
video.

There are currently no specific properties
defined or needed for this type.

video/x-
huffyuv

Huffyuv
video.

There are currently no specific properties
defined or needed for this type.

video/x-
indeo

Indeo
video.

indeoversioninteger 3 Version of the Indeo codec used to encode
this stream.

video/x-
jpeg

Motion-
JPEG
video.

There are currently no specific properties
defined or needed for this type. Note that
video/x-jpeg only applies to Motion-JPEG
pictures (YUY2 colourspace). RGB
colourspace JPEG images are referred to as
image/jpeg (JPEG image).

50

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

video/mpegMPEG
video.

mpegversioninteger 1, 2 or
4

Version of the MPEG codec that this stream
was encoded with. Note that we have
different mimetypes for 3ivx, XviD, DivX
and "standard" ISO MPEG-4. This is not a
good thing and we’re fully aware of this.
However, we do not have a solution yet.

systemstreambooleanFALSE Indicates that this stream is not a system
container stream.

video/x-
msmpeg

Microsoft
MPEG-
4
video
devia-
tions.

msmpegversioninteger 41, 42
or 43

Version of the MS-MPEG-4-like codec that
was used to encode this version. A value of
41 refers to MS MPEG 4.1, 42 to 4.2 and 43 to
version 4.3.

video/x-
msvideocodec

Microsoft
Video
1
(old-
ish
codec).

msvideoversioninteger 1 Version of the codec - always 1.

video/x-
pn-
realvideo

Realmedia
video.

rmversioninteger 1, 2 or
3

Version of the Real Video codec that this
stream was encoded with.

video/x-
rle

RLE
ani-
ma-
tion
for-
mat.

layout string "microsoft"
or
"quick-
time"

The RLE format inside the Microsoft AVI
container has a different byte layout than
the RLE format inside Apple’s Quicktime
container; this property keeps track of the
layout.

depth integer 1 to
64

Bitdepth of the used palette. This means
that the palette that belongs to this format
defines 2^depth colors.

palette_dataGstBuffer Buffer containing a color palette (in
native-endian RGBA) used by this format.
The buffer is of size 4*2^depth.

video/x-
svq

Sorensen
Video.

svqversioninteger 1 or 3 Version of the Sorensen codec that the
stream was encoded with.

video/x-
tarkin

Tarkin
video.

There are currently no specific properties
defined or needed for this type.

video/x-
theora

Theora
video.

There are currently no specific properties
defined or needed for this type.

51

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

video/x-
vp3

VP-3
video.

There are currently no specific properties
defined or needed for this type. Note that
we have different mimetypes for VP-3 and
Theora, which is not necessarily a good
idea. This could probably be improved.

video/x-
wmv

Windows
Me-
dia
Video

wmvversioninteger 1,2 or
3

Version of the WMV codec that the stream
was encoded with.

video/x-
xvid

XviD
video.

There are currently no specific properties
defined or needed for this type.

All image types.
image/jpegJoint

Pic-
ture
Ex-
pert
Group
Im-
age.

There are currently no specific properties
defined or needed for this type. Note that
image/jpeg only applies to
RGB-colourspace JPEG images;
YUY2-colourspace JPEG pictures are
referred to as video/x-jpeg ("Motion JPEG").

image/pngPortable
Net-
work
Graph-
ics
Im-
age.

There are currently no specific properties
defined or needed for this type.

Table 12-3. Table of Container Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

video/x-
ms-
asf

Advanced
Stream-
ing
For-
mat
(ASF).

There are currently no specific properties
defined or needed for this type.

video/x-
msvideo

AVI. There are currently no specific properties
defined or needed for this type.

52

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

video/x-
dv

Digital
Video.

systemstreambooleanTRUE Indicates that this is a container system
stream rather than an elementary video
stream.

video/x-
matroska

Matroska. There are currently no specific properties
defined or needed for this type.

video/mpegMotion
Pic-
tures
Ex-
pert
Group
Sys-
tem
Stream.

systemstreambooleanTRUE Indicates that this is a container system
stream rather than an elementary video
stream.

application/oggOgg. There are currently no specific properties
defined or needed for this type.

video/quicktimeQuicktime. There are currently no specific properties
defined or needed for this type.

video/x-
pn-
realvideo

Digital
Video.

systemstreambooleanTRUE Indicates that this is a container system
stream rather than an elementary video
stream.

audio/x-
wav

WAV. There are currently no specific properties
defined or needed for this type.

Table 12-4. Table of Subtitle Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

None defined yet.

Table 12-5. Table of Other Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Val-
ues

Property Description

None defined yet.

Notes
1. http://www.iana.org/assignmentsmedia-types

53

Chapter 12. Types and Properties

54

Chapter 13. Request and Sometimes pads

Until now, we’ve only dealt with pads that are always available. However, there’s
also pads that are only being created in some cases, or only if the application re-
quests the pad. The first is called a sometimes; the second is called a request pad. The
availability of a pad (always, sometimes or request) can be seen in a pad’s template.
This chapter will discuss when each of the two is useful, how they are created and
when they should be disposed.

Sometimes pads
A “sometimes” pad is a pad that is created under certain conditions, but not in all
cases. This mostly depends on stream content: demuxers will generally parse the
stream header, decide what elementary (video, audio, subtitle, etc.) streams are em-
bedded inside the system stream, and will then create a sometimes pad for each of
those elementary streams. At its own choice, it can also create more than one instance
of each of those per element instance. The only limitation is that each newly created
pad should have a unique name. Sometimes pads are disposed when the stream data
is disposed, too (i.e. when going from PAUSED to the READY state). You should not
dispose the pad on EOS, because someone might re-activate the pipeline and seek
back to before the end-of-stream point. The stream should still stay valid after EOS,
at least until the stream data is disposed. In any case, the element is always the owner
of such a pad.
The example code below will parse a text file, where the first line is a number (n). The
next lines all start with a number (0 to n-1), which is the number of the source pad
over which the data should be sent.

3
0: foo
1: bar
0: boo
2: bye

The code to parse this file and create the dynamic “sometimes” pads, looks like this:

typedef struct _GstMyFilter {
[..]
gboolean firstrun;
GList *srcpadlist;

} GstMyFilter;

static void
gst_my_filter_base_init (GstMyFilterClass *klass)
{
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
static GstStaticPadTemplate src_factory =
GST_STATIC_PAD_TEMPLATE (

"src_%02d",
GST_PAD_SRC,
GST_PAD_SOMETIMES,
GST_STATIC_CAPS ("ANY")

);
[..]
gst_element_class_add_pad_template (element_class,

gst_static_pad_template_get (&src_factory));
[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)

55

Chapter 13. Request and Sometimes pads

{
[..]
filter->firstrun = TRUE;
filter->srcpadlist = NULL;

}

/*
* Get one line of data - without newline.
*/

static GstBuffer *
gst_my_filter_getline (GstMyFilter *filter)
{
guint8 *data;
gint n, num;

/* max. line length is 512 characters - for safety */
for (n = 0; n < 512; n++) {

num = gst_bytestream_peek_bytes (filter->bs, &data, n + 1);
if (num != n + 1)

return NULL;

/* newline? */
if (data[n] == ’\n’) {

GstBuffer *buf = gst_buffer_new_and_alloc (n + 1);

gst_bytestream_peek_bytes (filter->bs, &data, n);
memcpy (GST_BUFFER_DATA (buf), data, n);
GST_BUFFER_DATA (buf)[n] = ’\0’;
gst_bytestream_flush_fast (filter->bs, n + 1);

return buf;
}

}
}

static void
gst_my_filter_loopfunc (GstElement *element)
{
GstMyFilter *filter = GST_MY_FILTER (element);
GstBuffer *buf;
GstPad *pad;
gint num, n;

/* parse header */
if (filter->firstrun) {

GstElementClass *klass;
GstPadTemplate *templ;
gchar *padname;

if (!(buf = gst_my_filter_getline (filter))) {
gst_element_error (element, STREAM, READ, (NULL),

("Stream contains no header"));
return;

}
num = atoi (GST_BUFFER_DATA (buf));
gst_buffer_unref (buf);

/* for each of the streams, create a pad */
klass = GST_ELEMENT_GET_CLASS (filter);
templ = gst_element_class_get_pad_template (klass, "src_%02d");
for (n = 0; n < num; n++) {

padname = g_strdup_printf ("src_%02d", n);
pad = gst_pad_new_from_template (templ, padname);
g_free (padname);

56

Chapter 13. Request and Sometimes pads

/* here, you would set _getcaps () and _link () functions */

gst_element_add_pad (element, pad);
filter->srcpadlist = g_list_append (filter->srcpadlist, pad);

}
}

/* and now, simply parse each line and push over */
if (!(buf = gst_my_filter_getline (filter))) {

GstEvent *event = gst_event_new (GST_EVENT_EOS);
GList *padlist;

for (padlist = srcpadlist;
padlist != NULL; padlist = g_list_next (padlist)) {

pad = GST_PAD (padlist->data);
gst_event_ref (event);
gst_pad_push (pad, GST_DATA (event));

}
gst_event_unref (event);
gst_element_set_eos (element);

return;
}

/* parse stream number and go beyond the ’:’ in the data */
num = atoi (GST_BUFFER_DATA (buf));
if (num >= 0 && num < g_list_length (filter->srcpadlist)) {

pad = GST_PAD (g_list_nth_data (filter->srcpadlist, num);

/* magic buffer parsing foo */
for (n = 0; GST_BUFFER_DATA (buf)[n] != ’:’ &&

GST_BUFFER_DATA (buf)[n] != ’\0’; n++) ;
if (GST_BUFFER_DATA (buf)[n] != ’\0’) {

GstBuffer *sub;

/* create subbuffer that starts right past the space. The reason
* that we don’t just forward the data pointer is because the
* pointer is no longer the start of an allocated block of memory,
* but just a pointer to a position somewhere in the middle of it.
* That cannot be freed upon disposal, so we’d either crash or have
* a memleak. Creating a subbuffer is a simple way to solve that. */
sub = gst_buffer_create_sub (buf, n + 1, GST_BUFFER_SIZE (buf) - n - 1);
gst_pad_push (pad, GST_DATA (sub));

}
}
gst_buffer_unref (buf);

}

Note that we use a lot of checks everywhere to make sure that the content in the file
is valid. This has two purposes: first, the file could be erronous, in which case we
prevent a crash. The second and most important reason is that - in extreme cases -
the file could be used maliciously to cause undefined behaviour in the plugin, which
might lead to security issues. Always assume that the file could be used to do bad
things.

57

Chapter 13. Request and Sometimes pads

Request pads
“Request” pads are similar to sometimes pads, except that request are created on de-
mand of something outside of the element rather than something inside the element.
This concept is often used in muxers, where - for each elementary stream that is to
be placed in the output system stream - one sink pad will be requested. It can also
be used in elements with a variable number of input or outputs pads, such as the
tee (multi-output), switch or aggregator (both multi-input) elements. At the time
of writing this, it is unclear to me who is responsible for cleaning up the created pad
and how or when that should be done. Below is a simple example of an aggregator
based on request pads.

static GstPad * gst_my_filter_request_new_pad (GstElement *element,
GstPadTemplate *templ,
const gchar *name);

static void
gst_my_filter_base_init (GstMyFilterClass *klass)
{
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (

"sink_%d",
GST_PAD_SINK,
GST_PAD_REQUEST,
GST_STATIC_CAPS ("ANY")

);
[..]
gst_element_class_add_pad_template (klass,

gst_static_pad_template_get (&sink_factory));
}

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

[..]
element_class->request_new_pad = gst_my_filter_request_new_pad;

}

static GstPad *
gst_my_filter_request_new_pad (GstElement *element,

GstPadTemplate *templ,
const gchar *name)

{
GstPad *pad;
GstMyFilterInputContext *context;

context = g_new0 (GstMyFilterInputContext, 1);
pad = gst_pad_new_from_template (templ, name);
gst_element_set_private_data (pad, context);

/* normally, you would set _link () and _getcaps () functions here */

gst_element_add_pad (element, pad);

return pad;
}

58

Chapter 14. Clocking

When playing complex media, each sound and video sample must be played in a spe-
cific order at a specific time. For this purpose, GStreamer provides a synchronization
mechanism.

Types of time
There are two kinds of time in GStreamer. Clock time is an absolute time. By contrast,
element time is the relative time, usually to the start of the current media stream. The
element time represents the time that should have a media sample that is being pro-
cessed by the element at this time. The element time is calculated by adding an offset
to the clock time.

Clocks
GStreamer can use different clocks. Though the system time can be used as a clock,
soundcards and other devices provides a better time source. For this reason some
elements provide a clock. The method get_clock is implemented in elements that
provide one.
As clocks return an absolute measure of time, they are not usually used directly. In-
stead, a reference to a clock is stored in any element that needs it, and it is used
internaly by GStreamer to calculate the element time.

Flow of data between elements and time
Now we will see how time information travels the pipeline in different states.
The pipeline starts playing. The source element typically knows the time of each
sample. 1 First, the source element sends a discontinous event. This event carries in-
formation about the current relative time of the next sample. This relative time is
arbitrary, but it must be consistent with the timestamp that will be placed in buffers.
It is expected to be the relative time to the start of the media stream, or whatever
makes sense in the case of each media. When receiving it, the other elements adjust
their offset of the element time so that this time matches the time written in the event.
Then the source element sends media samples in buffers. This element places a
timestamp in each buffer saying when the sample should be played. When the
buffer reachs the sink pad of the last element, this element compares the current
element time with the timestamp of the buffer. If the timestamp is higher or equal it
plays the buffer, otherwise it waits until the time to place the buffer arrives with
gst_element_wait().
If the stream is seeked, the next samples sent will have a timestamp that is not ad-
justed with the element time. Therefore, the source element must send a discontinous
event.

Obligations of each element.
Let us clarify the contract between GStreamer and each element in the pipeline.

Source elements
Source elements (or parsers of formats that provide notion of time, such as MPEG, as
explained above) must place a timestamp in each buffer that they deliver. The origin
of the time used is arbitrary, but it must match the time delivered in the discontinous

59

Chapter 14. Clocking

event (see below). However, it is expected that the origin is the origin of the media
stream.
In order to initialize the element time of the rest of the pipeline, a source element
must send a discontinous event before starting to play. In addition, after seeking, a
discontinious event must be sent, because the timestamp of the next element does
not match the element time of the rest of the pipeline.

Sink elements
If the element is intended to emit samples at a specific time (real time playing), the
element should require a clock, and thus implement the method set_clock.
In addition, before playing each sample, if the current element time is less than
the timestamp in the sample, it wait until the current time arrives should call
gst_element_wait() 2

Notes
1. Sometimes it is a parser element the one that knows the time, for instance if a

pipeline contains a filesrc element connected to a MPEG decoder element, the
former is the one that knows the time of each sample, because the knowledge
of when to play each sample is embedded in the MPEG format. In this case this
element will be regarded as the source element for this discussion.

2. With some schedulers, gst_element_wait() blocks the pipeline. For instance,
if there is one audio sink element and one video sink element, while the audio
element is waiting for a sample the video element cannot play other sample. This
behaviour is under discussion, and might change in a future release.

60

Chapter 15. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough to control the parameters that
affect the behaviour of your element. When this is the case you can expose these
parameters as Dynamic Parameters which can be manipulated by any Dynamic Pa-
rameters aware application.
Throughout this section, the term dparams will be used as an abbreviation for "Dy-
namic Parameters".

Comparing Dynamic Parameters with GObject Properties
Your first exposure to dparams may be to convert an existing element from using
object properties to using dparams. The following table gives an overview of the
difference between these approaches. The significance of these differences should
become apparent later on.

Object Properties Dynamic Parameters

Parameter definition Class level at compile time Any level at run time

Getting and setting Implemented by element
subclass as functions

Handled entirely by
dparams subsystem

Extra objects required None - all functionality is
derived from base
GObject

Element needs to create
and store a
GstDParamManager at
object creation

Frequency and resolution of
updates

Object properties will only
be updated between calls
to _get, _chain or _loop

dparams can be updated
at any rate independent of
calls to _get, _chain or
_loop up to sample-level
accuracy

Getting Started
The dparams subsystem is contained within the gstcontrol library. You need to
include the header in your element’s source file:

#include <gst/control/control.h>

Even though the gstcontrol library may be linked into the host application, you
should make sure it is loaded in your plugin_init function:

static gboolean
plugin_init (GModule *module, GstPlugin *plugin)
{

...

/* load dparam support library */
if (!gst_library_load ("gstcontrol"))
{

gst_info ("example: could not load support library: ’gstcontrol’\n");
return FALSE;

}

...
}

61

Chapter 15. Supporting Dynamic Parameters

You need to store an instance of GstDParamManager in your element’s struct:

struct _GstExample {
GstElement element;
...

GstDParamManager *dpman;

...
};

The GstDParamManager can be initialised in your element’s init function:

static void
gst_example_init (GstExample *example)
{

...

example->dpman = gst_dpman_new ("example_dpman", GST_ELEMENT(example));

...
}

Defining Parameter Specifications
You can define the dparams you need anywhere within your element but will usually
need to do so in only a couple of places:

• In the element init function, just after the call to gst_dpman_new

• Whenever a new pad is created so that parameters can affect data going into or out
of a specific pad. An example of this would be a mixer element where a separate
volume parameter is needed on every pad.

There are three different ways the dparams subsystem can pass parameters into your
element. Which one you use will depend on how that parameter is used within your
element. Each of these methods has its own function to define a required dparam:

• gst_dpman_add_required_dparam_direct

• gst_dpman_add_required_dparam_callback

• gst_dpman_add_required_dparam_array

These functions will return TRUE if the required dparam was added successfully.
The following function will be used as an example.

gboolean
gst_dpman_add_required_dparam_direct (GstDParamManager *dpman,

GParamSpec *param_spec,
gboolean is_log,
gboolean is_rate,
gpointer update_data)

The common parameters to these functions are:

62

Chapter 15. Supporting Dynamic Parameters

• GstDParamManager *dpman the element’s dparam manager
• GParamSpec *param_spec the param spec which defines the required dparam
• gboolean is_log whether this dparam value should be interpreted on a log scale

(such as a frequency or a decibel value)
• gboolean is_rate whether this dparam value is a proportion of the sample rate.

For example with a sample rate of 44100, 0.5 would be 22050 Hz and 0.25 would
be 11025 Hz.

Direct Method
This method is the simplest and has the lowest overhead for parameters which
change less frequently than the sample rate. First you need somewhere to store the
parameter - this will usually be in your element’s struct.

struct _GstExample {
GstElement element;
...

GstDParamManager *dpman;
gfloat volume;
...

};

Then to define the required dparam just call
gst_dpman_add_required_dparam_direct and pass in the
location of the parameter to change. In this case the location is
&(example->volume).

gst_dpman_add_required_dparam_direct (
example->dpman,
g_param_spec_float("volume","Volume","Volume of the audio",

0.0, 1.0, 0.8, G_PARAM_READWRITE),
FALSE,
FALSE,
&(example->volume)

);

You can now use example->volume anywhere in your element knowing that it will
always contain the correct value to use.

Callback Method
This should be used if the you have other values to calculate whenever a parame-
ter changes. If you used the direct method you wouldn’t know if a parameter had
changed so you would have to recalculate the other values every time you needed
them. By using the callback method, other values only have to be recalculated when
the dparam value actually changes.
The following code illustrates an instance where you might want to use the callback
method. If you had a volume dparam which was represented by a gfloat number,
your element may only deal with integer arithmetic. The callback could be used to
calculate the integer scaler when the volume changes. First you will need somewhere
to store these values.

struct _GstExample {
GstElement element;

63

Chapter 15. Supporting Dynamic Parameters

...

GstDParamManager *dpman;
gfloat volume_f;
gint volume_i;
...

};

When the required dparam is defined, the callback function
gst_example_update_volume and some user data (which in this case is our element
instance) is passed in to the call to gst_dpman_add_required_dparam_callback.

gst_dpman_add_required_dparam_callback (
example->dpman,
g_param_spec_float("volume","Volume","Volume of the audio",

0.0, 1.0, 0.8, G_PARAM_READWRITE),
FALSE,
FALSE,
gst_example_update_volume,
example

);

The callback function needs to conform to this signature

typedef void (*GstDPMUpdateFunction) (GValue *value, gpointer data);

In our example the callback function looks like this

static void
gst_example_update_volume(GValue *value, gpointer data)
{
GstExample *example = (GstExample*)data;
g_return_if_fail(GST_IS_EXAMPLE(example));

example->volume_f = g_value_get_float(value);
example->volume_i = example->volume_f * 8192;

}

Now example->volume_i can be used elsewhere and it will always contain the cor-
rect value.

Array Method
This method is quite different from the other two. It could be thought of as a spe-
cialised method which should only be used if you need the advantages that it pro-
vides. Instead of giving the element a single value it provides an array of values
where each item in the array corresponds to a sample of audio in your buffer. There
are a couple of reasons why this might be useful.

• Certain optimisations may be possible since you can iterate over your dparams
array and your buffer data together.

• Some dparams may be able to interpolate changing values at the sample rate. This
would allow the array to contain very smoothly changing values which may be
required for the stability and quality of some DSP algorithms.

The array method is currently the least mature of the three methods and is not yet
ready to be used in elements, but plugin writers should be aware of its existence for
the future.

64

Chapter 15. Supporting Dynamic Parameters

The Data Processing Loop
This is the most critical aspect of the dparams subsystem as it relates to elements. In
a traditional audio processing loop, a for loop will usually iterate over each sample
in the buffer, processing one sample at a time until the buffer is finished. A simplified
loop with no error checking might look something like this.

static void
example_chain (GstPad *pad, GstBuffer *buf)
{
...
gfloat *float_data;
int j;
GstExample *example = GST_EXAMPLE(GST_OBJECT_PARENT (pad));
int num_samples = GST_BUFFER_SIZE(buf)/sizeof(gfloat);
float_data = (gfloat *)GST_BUFFER_DATA(buf);
...
for (j = 0; j < num_samples; j++) {

float_data[j] *= example->volume;
}
...

}

To make this dparams aware, a couple of changes are needed.

static void
example_chain (GstPad *pad, GstBuffer *buf)
{
...
int j = 0;
GstExample *example = GST_EXAMPLE(GST_OBJECT_PARENT (pad));
int num_samples = GST_BUFFER_SIZE(buf)/sizeof(gfloat);
gfloat *float_data = (gfloat *)GST_BUFFER_DATA(buf);
int frame_countdown = GST_DPMAN_PREPROCESS(example->dpman, num_samples, GST_BUFFER_TIMESTAMP(buf));
...
while (GST_DPMAN_PROCESS_COUNTDOWN(example->dpman, frame_countdown, j)) {

float_data[j++] *= example->volume;
}
...

}

The biggest changes here are 2 new macros, GST_DPMAN_PREPROCESS and
GST_DPMAN_PROCESS_COUNTDOWN. You will also notice that the for loop has become
a while loop. GST_DPMAN_PROCESS_COUNTDOWN is called as the condition for the
while loop so that any required dparams can be updated in the middle of a buffer if
required. This is because one of the required behaviours of dparams is that they can
be sample accurate. This means that parameters change at the exact timestamp that
they are supposed to - not after the buffer has finished being processed.
It may be alarming to see a macro as the condition for a while loop, but it is actually
very efficient. The macro expands to the following.

#define GST_DPMAN_PROCESS_COUNTDOWN(dpman, frame_countdown, frame_count) \
(frame_countdown-- || \
(frame_countdown = GST_DPMAN_PROCESS(dpman, frame_count)))

So as long as frame_countdown is greater than 0, GST_DPMAN_PROCESS will not be
called at all. Also in many cases, GST_DPMAN_PROCESS will do nothing and simply
return 0, meaning that there is no more data in the buffer to process.
The macro GST_DPMAN_PREPROCESS will do the following:

65

Chapter 15. Supporting Dynamic Parameters

• Update any dparams which are due to be updated.
• Calculate how many samples should be processed before the next required update
• Return the number of samples until next update, or the number of samples in the

buffer - whichever is less.
In fact GST_DPMAN_PROCESS may do the same things as GST_DPMAN_PREPROCESS de-
pending on the mode that the dparam manager is running in (see below).

DParam Manager Modes
A brief explanation of dparam manager modes might be useful here even though it
doesn’t generally affect the way your element is written. There are different ways me-
dia applications will be used which require that an element’s parameters be updated
in differently. These include:

• Timelined - all parameter changes are known in advance before the pipeline is run.
• Realtime low-latency - Nothing is known ahead of time about when a parameter

might change. Changes need to be propagated to the element as soon as possible.
When a dparam-aware application gets the dparam manager for an element, the first
thing it will do is set the dparam manager mode. Current modes are "synchronous"
and "asynchronous".
If you are in a realtime low-latency situation then the "synchronous"mode is appro-
priate. During GST_DPMAN_PREPROCESS this mode will poll all dparams for required
updates and propagate them. GST_DPMAN_PROCESS will do nothing in this mode. To
then achieve the desired latency, the size of the buffers needs to be reduced so that
the dparams will be polled for updates at the desired frequency.
In a timelined situation, the "asynchronous" mode will be required. This
mode hasn’t actually been implemented yet but will be described anyway.
The GST_DPMAN_PREPROCESS call will precalculate when and how often each
dparam needs to update for the duration of the current buffer. From then on
GST_DPMAN_PROCESS will propagate the calculated updates each time it is called
until end of the buffer. If the application is rendering to disk in non-realtime, the
render could be sped up by increasing the buffer size. In the "asynchronous" mode
this could be done without affecting the sample accuracy of the parameter updates

Dynamic Parameters for Video
All of the explanation so far has presumed that the buffer contains audio data with
many samples. Video should be regarded differently since a video buffer often con-
tains only 1 frame. In this case some of the complexity of dparams isn’t required but
the other benefits still make it useful for video parameters. If a buffer only contains
one frame of video, only a single call to GST_DPMAN_PREPROCESS should be required.
For more than one frame per buffer, treat it the same as the audio case.

66

Chapter 16. MIDI

WRITEME

67

Chapter 16. MIDI

68

Chapter 17. Interfaces

Previously, in the chapter Adding Arguments, we have introduced the concept of
GObject properties of controlling an element’s behaviour. This is very powerful, but
it has two big disadvantages: first of all, it is too generic, and second, it isn’t dynamic.
The first disadvantage is related to the customizability of the end-user interface that
will be built to control the element. Some properties are more important than others.
Some integer properties are better shown in a spin-button widget, whereas others
would be better represented by a slider widget. Such things are not possible because
the UI has no actual meaning in the application. A UI widget that represents a bitrate
property is the same as a UI widget that represents the size of a video, as long as both
are of the same GParamSpec type. Another problem, is that things like parameter
grouping, function grouping, or parameter coupling are not really possible.
The second problem with parameters are that they are not dynamic. In many cases,
the allowed values for a property are not fixed, but depend on things that can only
be detected at runtime. The names of inputs for a TV card in a video4linux source el-
ement, for example, can only be retrieved from the kernel driver when we’ve opened
the device; this only happens when the element goes into the READY state. This
means that we cannot create an enum property type to show this to the user.
The solution to those problems is to create very specialized types of controls for cer-
tain often-used controls. We use the concept of interfaces to achieve this. The basis
of this all is the glib GTypeInterface type. For each case where we think it’s useful,
we’ve created interfaces which can be implemented by elements at their own will.
We’ve also created a small extension to GTypeInterface (which is static itself, too)
which allows us to query for interface availability based on runtime properties. This
extension is called GstImplementsInterface1.
One important note: interfaces do not replace properties. Rather, interfaces should be
built next to properties. There are two important reasons for this. First of all, proper-
ties can be saved in XML files. Second, properties can be specified on the command-
line (gst-launch).

How to Implement Interfaces
Implementing interfaces is intiated in the _get_type () of your element. You
can register one or more interfaces after having registered the type itself. Some
interfaces have dependencies on other interfaces or can only be registered by
certain types of elements. You will be notified of doing that wrongly when using
the element: it will quit with failed assertions, which will explain what went
wrong. In the case of GStreamer, the only dependency that some interfaces have
is GstImplementsInterface2. Per interface, we will indicate clearly when it
depends on this extension. If it does, you need to register support for that interface
before registering support for the interface that you’re wanting to support. The
example below explains how to add support for a simple interface with no further
dependencies. For a small explanation on GstImplementsInterface3, see the next
section about the mixer interface: Mixer Interface.

static void gst_my_filter_some_interface_init (GstSomeInterface *iface);

GType
gst_my_filter_get_type (void)
{
static GType my_filter_type = 0;

if (!my_filter_type) {
static const GTypeInfo my_filter_info = {

sizeof (GstMyFilterClass),
(GBaseInitFunc) gst_my_filter_base_init,
NULL,

69

Chapter 17. Interfaces

(GClassInitFunc) gst_my_filter_class_init,
NULL,
NULL,
sizeof (GstMyFilter),
0,
(GInstanceInitFunc) gst_my_filter_init

};
static const GInterfaceInfo some_interface_info = {

(GInterfaceInitFunc) gst_my_filter_some_interface_init,
NULL,
NULL

};

my_filter_type =
g_type_register_static (GST_TYPE_MY_FILTER,

"GstMyFilter",
&my_filter_info, 0);
g_type_add_interface_static (my_filter_type,
GST_TYPE_SOME_INTERFACE,

&some_interface_info);
}

return my_filter_type;
}

static void
gst_my_filter_some_interface_init (GstSomeInterface *iface)
{
/* here, you would set virtual function pointers in the interface */

}

URI interface
WRITEME

Mixer Interface
The goal of the mixer interface is to provide a simple yet powerful API to applications
for audio hardware mixer/volume control. Most soundcards have hardware mixers,
where volume can be changed, they can be muted, inputs can be modified to mix
their content into what will be read from the device by applications (in our case:
audio source plugins). The mixer interface is the way to control those. The mixer
interface can also be used for volume control in software (e.g. the “volume” element).
The end goal of this interface is to allow development of hardware volume control
applications and for the control of audio volume and input/output settings.
The mixer interface requires the GstImplementsInterface4 interface to be imple-
mented by the element. The example below will feature both, so it serves as an ex-
ample for the GstImplementsInterface5, too. In this interface, it is required to set
a function pointer for the supported () function. If you don’t, this function will
always return FALSE (default implementation) and the mixer interface implementa-
tion will not work. For the mixer interface, the only required function is list_tracks
(). All other function pointers in the mixer interface are optional, although it is
strongly recommended to set function pointers for at least the get_volume () and
set_volume () functions. The API reference for this interface documents the goal of
each function, so we will limit ourselves to the implementation here.
The following example shows a mixer implementation for a software N-to-1 element.
It does not show the actual process of stream mixing, that is far too complicated for
this guide.

70

Chapter 17. Interfaces

#include <gst/mixer/mixer.h>

typedef struct _GstMyFilter {
[..]
gint volume;
GList *tracks;

} GstMyFilter;

static void gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface);
static void gst_my_filter_mixer_interface_init (GstMixerClass *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo implements_interface_info = {
(GInterfaceInitFunc) gst_my_filter_implements_interface_init,
NULL,
NULL

};
static const GInterfaceInfo mixer_interface_info = {

(GInterfaceInitFunc) gst_my_filter_mixer_interface_init,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_IMPLEMENTS_INTERFACE,
&implements_interface_info);

g_type_add_interface_static (my_filter_type,
GST_TYPE_MIXER,
&mixer_interface_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{
GstMixerTrack *track = NULL;

[..]
filter->volume = 100;
filter->tracks = NULL;
track = g_object_new (GST_TYPE_MIXER_TRACK, NULL);
track->label = g_strdup ("MyTrack");
track->num_channels = 1;
track->min_volume = 0;
track->max_volume = 100;
track->flags = GST_MIXER_TRACK_SOFTWARE;
filter->tracks = g_list_append (filter->tracks, track);

}

static gboolean
gst_my_filter_interface_supported (GstImplementsInterface *iface,

GType iface_type)
{
g_return_val_if_fail (iface_type == GST_TYPE_MIXER, FALSE);

/* for the sake of this example, we’ll always support it. However, normally,
* you would check whether the device you’ve opened supports mixers. */

return TRUE;
}

static void
gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface)
{
iface->supported = gst_my_filter_interface_supported;

71

Chapter 17. Interfaces

}

/*
* This function returns the list of support tracks (inputs, outputs)
* on this element instance. Elements usually build this list during
* _init () or when going from NULL to READY.
*/

static const GList *
gst_my_filter_mixer_list_tracks (GstMixer *mixer)
{
GstMyFilter *filter = GST_MY_FILTER (mixer);

return filter->tracks;
}

/*
* Set volume. volumes is an array of size track->num_channels, and
* each value in the array gives the wanted volume for one channel
* on the track.
*/

static void
gst_my_filter_mixer_set_volume (GstMixer *mixer,

GstMixerTrack *track,
gint *volumes)

{
GstMyFilter *filter = GST_MY_FILTER (mixer);

filter->volume = volumes[0];

g_print ("Volume set to %d\n", filter->volume);
}

static void
gst_my_filter_mixer_get_volume (GstMixer *mixer,

GstMixerTrack *track,
gint *volumes)

{
GstMyFilter *filter = GST_MY_FILTER (mixer);

volumes[0] = filter->volume;
}

static void
gst_my_filter_mixer_interface_init (GstMixerClass *iface)
{
/* the mixer interface requires a definition of the mixer type:
* hardware or software? */

GST_MIXER_TYPE (iface) = GST_MIXER_SOFTWARE;

/* virtual function pointers */
iface->list_tracks = gst_my_filter_mixer_list_tracks;
iface->set_volume = gst_my_filter_mixer_set_volume;
iface->get_volume = gst_my_filter_mixer_get_volume;

}

The mixer interface is very audio-centric. However, with the software flag set, the
mixer can be used to mix any kind of stream in a N-to-1 element to join (not aggre-
gate!) streams together into one output stream. Conceptually, that’s called mixing too.
You can always use the element factory’s “category” to indicate type of your element.
In a software element that mixes random streams, you would not be required to im-
plement the _get_volume () or _set_volume () functions. Rather, you would only
implement the _set_record () to enable or disable tracks in the output stream. to

72

Chapter 17. Interfaces

make sure that a mixer-implementing element is of a certain type, check the element
factory’s category.

Tuner Interface
As opposed to the mixer interface, that’s used to join together N streams into one
output stream by mixing all streams together, the tuner interface is used in N-to-
1 elements too, but instead of mixing the input streams, it will select one stream
and push the data of that stream to the output stream. It will discard the data of
all other streams. There is a flag that indicates whether this is a software-tuner (in
which case it is a pure software implementation, with N sink pads and 1 source pad)
or a hardware-tuner, in which case it only has one source pad, and the whole stream
selection process is done in hardware. The software case can be used in elements such
as switch. The hardware case can be used in elements with channel selection, such as
video source elements (v4lsrc, v4l2src, etc.). If you need a specific element type, use
the element factory’s “category” to make sure that the element is of the type that you
need. Note that the interface itself is highly analog-video-centric.
This interface requires the GstImplemensInterface6 interface to work correctly.
The following example shows how to implement the tuner interface in an element. It
does not show the actual process of stream selection, that is irrelevant for this section.

#include <gst/tuner/tuner.h>

typedef struct _GstMyFilter {
[..]
gint active_input;
GList *channels;

} GstMyFilter;

static void gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface);
static void gst_my_filter_tuner_interface_init (GstTunerClass *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo implements_interface_info = {
(GInterfaceInitFunc) gst_my_filter_implements_interface_init,
NULL,
NULL

};
static const GInterfaceInfo tuner_interface_info = {

(GInterfaceInitFunc) gst_my_filter_tuner_interface_init,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_IMPLEMENTS_INTERFACE,
&implements_interface_info);

g_type_add_interface_static (my_filter_type,
GST_TYPE_TUNER,
&tunerr_interface_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{
GstTunerChannel *channel = NULL;

[..]
filter->active_input = 0;

73

Chapter 17. Interfaces

filter->channels = NULL;
channel = g_object_new (GST_TYPE_TUNER_CHANNEL, NULL);
channel->label = g_strdup ("MyChannel");
channel->flags = GST_TUNER_CHANNEL_INPUT;
filter->channels = g_list_append (filter->channels, channel);

}

static gboolean
gst_my_filter_interface_supported (GstImplementsInterface *iface,

GType iface_type)
{
g_return_val_if_fail (iface_type == GST_TYPE_TUNER, FALSE);

/* for the sake of this example, we’ll always support it. However, normally,
* you would check whether the device you’ve opened supports tuning. */

return TRUE;
}

static void
gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface)
{
iface->supported = gst_my_filter_interface_supported;

}

static const GList *
gst_my_filter_tuner_list_channels (GstTuner *tuner)
{
GstMyFilter *filter = GST_MY_FILTER (tuner);

return filter->channels;
}

static GstTunerChannel *
gst_my_filter_tuner_get_channel (GstTuner *tuner)
{
GstMyFilter *filter = GST_MY_FILTER (tuner);

return g_list_nth_data (filter->channels,
filter->active_input);

}

static void
gst_my_filter_tuner_set_channel (GstTuner *tuner,

GstTunerChannel *channel)
{
GstMyFilter *filter = GST_MY_FILTER (tuner);

filter->active_input = g_list_index (filter->channels, channel);
g_assert (filter->active_input >= 0);

}

static void
gst_my_filter_tuner_interface_init (GstTunerClass *iface)
{
iface->list_channels = gst_my_filter_tuner_list_channels;
iface->get_channel = gst_my_filter_tuner_get_channel;
iface->set_channel = gst_my_filter_tuner_set_channel;

}

As said, the tuner interface is very analog video-centric. It features functions for se-
lecting an input or output, and on inputs, it features selection of a tuning frequency
if the channel supports frequency-tuning on that input. Likewise, it allows signal-
strength-acquiring if the input supports that. Frequency tuning can be used for radio
or cable-TV tuning. Signal-strength is an indication of the signal and can be used for

74

Chapter 17. Interfaces

visual feedback to the user or for autodetection. Next to that, it also features norm
selection, which is only useful for analog video elements.

Color Balance Interface
WRITEME

Property Probe Interface
Property probing is a generic solution to the problem that properties’ value lists in an
enumeration are static. We’ve shown enumerations in Adding Arguments. Property
probing tries to accomplish a goal similar to enumeration lists: to have a limited, ex-
plicit list of allowed values for a property. There are two differences between enumer-
ation lists and probing. Firstly, enumerations only allow strings as values; property
probing works for any value type. Secondly, the contents of a probed list of allowed
values may change during the life of an element. The contents of an enumeration
list are static. Currently, property probing is being used for detection of devices (e.g.
for OSS elements, Video4linux elements, etc.). It could - in theory - be used for any
property, though.
Property probing stores the list of allowed (or recommended) values in a
GValueArray and returns that to the user. NULL is a valid return value, too. The
process of property probing is separated over two virtual functions: one for probing
the property to create a GValueArray, and one to retrieve the current GValueArray.
Those two are separated because probing might take a long time (several seconds).
Also, this simpliies interface implementation in elements. For the application, there
are functions that wrap those two. For more information on this, have a look at the
API reference for the GstPropertyProbe interface.
Below is a example of property probing for the audio filter element; it will probe for
allowed values for the “silent” property. Indeed, this value is a gboolean so it doesn’t
make much sense. Then again, it’s only an example.

#include <gst/propertyprobe/propertyprobe.h>

static void gst_my_filter_probe_interface_init (GstPropertyProbeInterface *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo probe_interface_info = {
(GInterfaceInitFunc) gst_my_filter_probe_interface_init,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_PROPERTY_PROBE,
&probe_interface_info);

[..]
}

static const GList *
gst_my_filter_probe_get_properties (GstPropertyProbe *probe)
{
GObjectClass *klass = G_OBJECT_GET_CLASS (probe);
static GList *props = NULL;

if (!props) {
GParamSpec *pspec;

75

Chapter 17. Interfaces

pspec = g_object_class_find_property (klass, "silent");
props = g_list_append (props, pspec);

}

return props;
}

static gboolean
gst_my_filter_probe_needs_probe (GstPropertyProbe *probe,

guint prop_id,
const GParamSpec *pspec)

{
gboolean res = FALSE;

switch (prop_id) {
case ARG_SILENT:

res = FALSE;
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}

return res;
}

static void
gst_my_filter_probe_probe_property (GstPropertyProbe *probe,

guint prop_id,
const GParamSpec *pspec)

{
switch (prop_id) {

case ARG_SILENT:
/* don’t need to do much here... */
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}
}

static GValueArray *
gst_my_filter_get_silent_values (GstMyFilter *filter)
{
GValueArray *array = g_value_array_new (2);
GValue value = { 0 };

g_value_init (&value, G_TYPE_BOOLEAN);

/* add TRUE */
g_value_set_boolean (&value, TRUE);
g_value_array_append (array, &value);

/* add FALSE */
g_value_set_boolean (&value, FALSE);
g_value_array_append (array, &value);

g_value_unset (&value);

return array;
}

static GValueArray *
gst_my_filter_probe_get_values (GstPropertyProbe *probe,

guint prop_id,

76

Chapter 17. Interfaces

const GParamSpec *pspec)
{
GstMyFilter *filter = GST_MY_FILTER (probe);
GValueArray *array = NULL;

switch (prop_id) {
case ARG_SILENT:

array = gst_my_filter_get_silent_values (filter);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}

return array;
}

static void
gst_my_filter_probe_interface_init (GstPropertyProbeInterface *iface)
{
iface->get_properties = gst_my_filter_probe_get_properties;
iface->needs_probe = gst_my_filter_probe_needs_probe;
iface->probe_property = gst_my_filter_probe_probe_property;
iface->get_values = gst_my_filter_probe_get_values;

}

You don’t need to support any functions for getting or setting values. All that is
handled via the standard GObject _set_property () and _get_property () func-
tions.

X Overlay Interface
An X Overlay is basically a video output in a XFree86 drawable. Elements imple-
menting this interface will draw video in a X11 window. Through this interface, ap-
plications will be proposed 2 different modes to work with a plugin implemeting it.
The first mode is a passive mode where the plugin owns, creates and destroys the
X11 window. The second mode is an active mode where the application handles the
X11 window creation and then tell the plugin where it should output video. Let’s get
a bit deeper in those modes...
A plugin drawing video output in a X11 window will need to have that window at
one stage or another. Passive mode simply means that no window has been given to
the plugin before that stage, so the plugin created the window by itself. In that case
the plugin is responsible of destroying that window when it’s not needed anymore
and it has to tell the applications that a window has been created so that the appli-
cation can use it. This is done using the have_xwindow_id signal that can be emitted
from the plugin with the gst_x_overlay_got_xwindow_idmethod.
As you probably guessed already active mode just means sending a X11
window to the plugin so that video output goes there. This is done using the
gst_x_overlay_set_xwindow_idmethod.
It is possible to switch from one mode to another at any moment, so the plugin imple-
menting this interface has to handle all cases. There are only 2 methods that plugins
writers have to implement and they most probably look like that :

static void
gst_my_filter_set_xwindow_id (GstXOverlay *overlay, XID xwindow_id)
{
GstMyFilter *my_filter = GST_MY_FILTER (overlay);

if (my_filter->window)

77

Chapter 17. Interfaces

gst_my_filter_destroy_window (my_filter->window);

my_filter->window = xwindow_id;
}

static void
gst_my_filter_get_desired_size (GstXOverlay *overlay,

guint *width, guint *height)
{
GstMyFilter *my_filter = GST_MY_FILTER (overlay);

*width = my_filter->width;
*height = my_filter->height;

}

static void
gst_my_filter_xoverlay_init (GstXOverlayClass *iface)
{
iface->set_xwindow_id = gst_my_filter_set_xwindow_id;
iface->get_desired_size = gst_my_filter_get_desired_size;

}

You will also need to use the interface methods to fire signals when needed such as
in the pad link function where you will know the video geometry and maybe create
the window.

static MyFilterWindow *
gst_my_filter_window_create (GstMyFilter *my_filter, gint width, gint height)
{
MyFilterWindow *window = g_new (MyFilterWindow, 1);
...
gst_x_overlay_got_xwindow_id (GST_X_OVERLAY (my_filter), window->win);

}

static GstPadLinkReturn
gst_my_filter_sink_link (GstPad *pad, const GstCaps *caps)
{
GstMyFilter *my_filter = GST_MY_FILTER (overlay);
gint width, height;
gboolean ret;
...
ret = gst_structure_get_int (structure, "width", &width);
ret &= gst_structure_get_int (structure, "height", &height);
if (!ret) return GST_PAD_LINK_REFUSED;

if (!my_filter->window)
my_filter->window = gst_my_filter_create_window (my_filter, width, height);

gst_x_overlay_got_desired_size (GST_X_OVERLAY (my_filter),
width, height);

...
}

Navigation Interface
WRITEME

78

Chapter 17. Interfaces

Notes
1. ../../gstreamer/html/GstImplementsInterface.html
2. ../../gstreamer/html/GstImplementsInterface.html
3. ../../gstreamer/html/GstImplementsInterface.html
4. ../../gstreamer/html/GstImplementsInterface.html
5. ../../gstreamer/html/GstImplementsInterface.html
6. ../../gstreamer/html/GstImplementsInterface.html

79

Chapter 17. Interfaces

80

Chapter 18. Tagging (Metadata and Streaminfo)

Tags are pieces of information stored in a stream that are not the content itself, but
they rather describe the content. Most media container formats support tagging in one
way or another. Ogg uses VorbisComment for this, MP3 uses ID3, AVI and WAV use
RIFF’s INFO list chunk, etc. GStreamer provides a general way for elements to read
tags from the stream and expose this to the user. The tags (at least the metadata) will
be part of the stream inside the pipeline. The consequence of this is that transcoding
of files from one format to another will automatically preserve tags, as long as the
input and output format elements both support tagging.
Tags are separated in two categories in GStreamer, even though applications won’t
notice anything of this. The first are called metadata, the second are called streaminfo.
Metadata are tags that describe the non-technical parts of stream content. They can
be changed without needing to re-encode the stream completely. Examples are “au-
thor”, “title” or “album”. The container format might still need to be re-written for
the tags to fit in, though. Streaminfo, on the other hand, are tags that describe the
stream contents technically. To change them, the stream needs to be re-encoded. Ex-
amples are “codec” or “bitrate”. Note that some container formats (like ID3) store
various streaminfo tags as metadata in the file container, which means that they can
be changed so that they don’t match the content in the file anymore. Still, they are
called metadata because technically, they can be changed without re-encoding the
whole stream, even though that makes them invalid. Files with such metadata tags
will have the same tag twice: once as metadata, once as streaminfo.
A tag reading element is called TagGetter in GStreamer. A tag writer is called
TagSetter1. An element supporting both can be used in a tag editor for quick tag
changing.

Reading Tags from Streams
The basic object for tags is a GstTagList 2. An element that is reading tags from a
stream should create an empty taglist and fill this with individual tags. Empty
tag lists can be created with gst_tag_list_new (). Then, the element can fill
the list using gst_tag_list_add_values () . Note that an element probably
reads metadata as strings, but values might not necessarily be strings. Be sure to
use gst_value_transform () to make sure that your data is of the right type.
After data reading, the application can be notified of the new taglist by calling
gst_element_found_tags (). The tags should also be part of the datastream, so
they should be pushed over all source pads. The function gst_event_new_tag
() creates an event from a taglist. This can be pushed over source pads using
gst_pad_push (). Simple elements with only one source pad can combine all these
steps all-in-one by using the function gst_element_found_tags_for_pad ().
The following example program will parse a file and parse the data as metadata/tags
rather than as actual content-data. It will parse each line as “name:value”, where
name is the type of metadata (title, author, ...) and value is the metadata value. The
_getline () is the same as the one given in Sometimes pads.

static void
gst_my_filter_loopfunc (GstElement *element)
{
GstMyFilter *filter = GST_MY_FILTER (element);
GstBuffer *buf;
GstTagList *taglist = gst_tag_list_new ();

/* get each line and parse as metadata */
while ((buf = gst_my_filter_getline (filter))) {

gchar *line = GST_BUFFER_DATA (buf), *colon_pos, *type = NULL;a

/* get the position of the ’:’ and go beyond it */

81

Chapter 18. Tagging (Metadata and Streaminfo)

if (!(colon_pos = strchr (line, ’:’)))
goto next:

/* get the string before that as type of metadata */
type = g_strndup (line, colon_pos - line);

/* content is one character beyond the ’:’ */
colon_pos = &colon_pos[1];
if (*colon_pos == ’\0’)

goto next;

/* get the metadata category, it’s value type, store it in that
* type and add it to the taglist. */

if (gst_tag_exists (type)) {
GValue from = { 0 }, to = { 0 };
GType to_type;

to_type = gst_tag_get_type (type);
g_value_init (&from, G_TYPE_STRING);
g_value_set_string (&from, colon_pos);
g_value_init (&to, to_type);
g_value_transform (&from, &to);
g_value_unset (&from);
gst_tag_list_add_values (taglist, GST_TAG_MERGE_APPEND,

type, &to, NULL);
g_value_unset (&to);

}

next:
g_free (type);
gst_buffer_unref (buf);

}

/* signal metadata */
gst_element_found_tags_for_pad (element, filter->srcpad, 0, taglist);
gst_tag_list_free (taglist);

/* send EOS */
gst_pad_send_event (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EOS)));
gst_element_set_eos (element);

}

We currently assume the core to already know the mimetype (gst_tag_exists ()).
You can add new tags to the list of known tags using gst_tag_register (). If you
think the tag will be useful in more cases than just your own element, it might be
a good idea to add it to gsttag.c instead. That’s up to you to decide. If you want
to do it in your own element, it’s easiest to register the tag in one of your class init
functions, preferrably _class_init ().

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{
[..]
gst_tag_register ("my_tag_name", GST_TAG_FLAG_META,

G_TYPE_STRING,
_("my own tag"),
_("a tag that is specific to my own element"),
NULL);

[..]
}

82

Chapter 18. Tagging (Metadata and Streaminfo)

Writing Tags to Streams
Tag writers are the opposite of tag readers. Tag writers only take metadata tags into
account, since that’s the only type of tags that have to be written into a stream. Tag
writers can receive tags in three ways: internal, application and pipeline. Internal tags
are tags read by the element itself, which means that the tag writer is - in that case -
a tag reader, too. Application tags are tags provided to the element via the TagSetter
interface (which is just a layer). Pipeline tags are tags provided to the element from
within the pipeline. The element receives such tags via the GST_EVENT_TAG event,
which means that tags writers should automatically be event aware. The tag writer is
responsible for combining all these three into one list and writing them to the output
stream.
The example below will receive tags from both application and pipeline, combine
them and write them to the output stream. It implements the tag setter so applications
can set tags, and retrieves pipeline tags from incoming events.

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo tag_setter_info = {
NULL,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_TAG_SETTER,
&tag_setter_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{
GST_FLAG_SET (filter, GST_ELEMENT_EVENT_AWARE);

[..]
}

/*
* Write one tag.
*/

static void
gst_my_filter_write_tag (const GstTagList *taglist,

const gchar *tagname,
gpointer data)

{
GstMyFilter *filter = GST_MY_FILTER (data);
GstBuffer *buffer;
guint num_values = gst_tag_list_get_tag_size (list, tag_name), n;
const GValue *from;
GValue to = { 0 };

g_value_init (&to, G_TYPE_STRING);

for (n = 0; n < num_values; n++) {
from = gst_tag_list_get_value_index (taglist, tagname, n);
g_value_transform (from, &to);

buf = gst_buffer_new ();
GST_BUFFER_DATA (buf) = g_strdup_printf ("%s:%s", tagname,

g_value_get_string (&to));
GST_BUFFER_SIZE (buf) = strlen (GST_BUFFER_DATA (buf));

83

Chapter 18. Tagging (Metadata and Streaminfo)

gst_pad_push (filter->srcpad, GST_DATA (buf));
}

g_value_unset (&to);
}

static void
gst_my_filter_loopfunc (GstElement *element)
{
GstMyFilter *filter = GST_MY_FILTER (element);
GstTagSetter *tagsetter = GST_TAG_SETTER (element);
GstData *data;
GstEvent *event;
gboolean eos = FALSE;
GstTagList *taglist = gst_tag_list_new ();

while (!eos) {
data = gst_pad_pull (filter->sinkpad);

/* We’re not very much interested in data right now */
if (GST_IS_BUFFER (data))

gst_buffer_unref (GST_BUFFER (data));
event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_TAG:
gst_tag_list_insert (taglist, gst_event_tag_get_list (event),
GST_TAG_MERGE_PREPEND);
gst_event_unref (event);
break;

case GST_EVENT_EOS:
eos = TRUE;
gst_event_unref (event);
break;

default:
gst_pad_event_default (filter->sinkpad, event);
break;

}
}

/* merge tags with the ones retrieved from the application */
if (gst_tag_setter_get_list (tagsetter)) {

gst_tag_list_insert (taglist,
gst_tag_setter_get_list (tagsetter),
gst_tag_setter_get_merge_mode (tagsetter));

}

/* write tags */
gst_tag_list_foreach (taglist, gst_my_filter_write_tag, filter);

/* signal EOS */
gst_pad_push (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EOS)));
gst_element_set_eos (element);

}

Note that normally, elements would not read the full stream before processing tags.
Rather, they would read from each sinkpad until they’ve received data (since tags
usually come in before the first data buffer) and process that.

84

Chapter 18. Tagging (Metadata and Streaminfo)

Notes
1. ../../gstreamer/html/GstTagSetter.html
2. ../../gstreamer/html/gstreamer-GstTagList.html

85

Chapter 18. Tagging (Metadata and Streaminfo)

86

Chapter 19. Events: Seeking, Navigation and More

There are many different event types but only 2 ways they can travel across the
pipeline: downstream or upstream. It is very important to understand how both of
those methods work because if one element in the pipeline is not handling them cor-
rectly the whole event system of the pipeline is broken. We will try to explain here
how these methods work and how elements are supposed to implement them.

Downstream events
Downstream events are received through the sink pad’s dataflow. Depending if your
element is loop or chain based you will receive events in your loop/chain function
as a GstData with gst_pad_pull or directly in the function call arguments. So when
receiving dataflow from the sink pad you have to check first if this data chunk is
an event. If that’s the case you check what kind of event it is to react on relevant
ones and then forward others downstream using gst_pad_event_default. Here is
an example for both loop and chain based elements.

/* Chain based element */
static void
gst_my_filter_chain (GstPad *pad,

GstData *data)
{
GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
...
if (GST_IS_EVENT (data)) {

GstEvent *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:
/* end-of-stream, we should close down all stream leftovers here */
gst_my_filter_stop_processing (filter);
/* fall-through to default event handling */

default:
gst_pad_event_default (pad, event);
break;

}
return;

}
...

}

/* Loop based element */
static void
gst_my_filter_loop (GstElement *element)
{
GstMyFilter *filter = GST_MY_FILTER (element);
GstData *data = NULL;

data = gst_pad_pull (filter->sinkpad);

if (GST_IS_EVENT (data)) {
GstEvent *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:
/* end-of-stream, we should close down all stream leftovers here */
gst_my_filter_stop_processing (filter);
/* fall-through to default event handling */

default:
gst_pad_event_default (filter->sinkpad, event);
break;

}

87

Chapter 19. Events: Seeking, Navigation and More

return;
}
...

}

Upstream events
Upstream events are generated by an element somewhere in the pipeline and sent
using the gst_pad_send_event function. This function simply realizes the pad and
call the default event handler of that pad. The default event handler of pads is
gst_pad_event_default , it basically sends the event to the peer pad. So upstream
events always arrive on the src pad of your element and are handled by the default
event handler except if you override that handler to handle it yourself. There are
some specific cases where you have to do that :

• If you have multiple sink pads in your element. In that case you will have to decide
which one of the sink pads you will send the event to.

• If you need to handle that event locally. For example a navigation event that you
will want to convert before sending it upstream.

The processing you will do in that event handler does not really matter but there are
important rules you have to absolutely respect because one broken element event
handler is breaking the whole pipeline event handling. Here they are :

• Always forward events you won’t handle upstream using the default
gst_pad_event_default method.

• If you are generating some new event based on the one you received don’t forget
to gst_event_unref the event you received.

• Event handler function are supposed to return TRUE or FALSE indicating if the
event has been handled or not. Never simply return TRUE/FALSE in that handler
except if you really know that you have handled that event.

Here is an example of correct upstream event handling for a plugin that wants to
modify navigation events.

static gboolean
gst_my_filter_handle_src_event (GstPad *pad,

GstEvent *event)
{
GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_NAVIGATION:

GstEvent *new_event = gst_event_new (GST_EVENT_NAVIGATION);;
/* Create a new event based on received one and then send it */
...
gst_event_unref (event);
return gst_pad_event_default (pad, new_event);

default:
/* Falling back to default event handling for that pad */
return gst_pad_event_default (pad, event);

}
}

88

Chapter 19. Events: Seeking, Navigation and More

All Events Together
In this chapter follows a list of all defined events that are currently being used, plus
how they should be used/interpreted. Events are stored in a GstEvent 1 structure,
which is simply a big C union with the types for each event in it. For the next de-
velopment cycle, we intend to switch events over to GstStructure 2, but you don’t
need to worry about that too much for now.
In this chapter, we will discuss the following events:

• End of Stream (EOS)
• Flush
• Stream Discontinuity
• Seek Request
• Stream Filler
• Interruption
• Navigation
• Tag (metadata)

End of Stream (EOS)
End-of-stream events are sent if the stream that an element sends out is finished.
An element receiving this event (from upstream, so it receives it on its sinkpad)
will generally forward the event further downstream and set itself to EOS
(gst_element_set_eos ()). gst_pad_event_default () takes care of all this,
so most elements do not need to support this event. Exceptions are elements that
explicitly need to close a resource down on EOS, and N-to-1 elements. Note that the
stream itself is not a resource that should be closed down on EOS! Applications
might seek back to a point before EOS and set the pipeline to PLAYING again.
The EOS event (GST_EVENT_EOS) has no properties, and that makes it
one of the simplest events in GStreamer. It is created using gst_event_new
(GST_EVENT_EOS);.
Some elements support the EOS event upstream, too. This signals the element to go
into EOS as soon as possible and signal the EOS event forward downstream. This is
useful for elements that have no concept of end-of-stream themselves. Examples are
TV card sources, audio card sources, etc. This is not (yet) part of the official specifica-
tions of this event, though.

Flush
The flush event is being sent downstream if all buffers and caches in the pipeline
should be emptied. “Queue” elements will empty their internal list of buffers when
they receive this event, for example. File sink elements (e.g. “filesink”) will flush
the kernel-to-disk cache (fdatasync () or fflush ()) when they receive this event.
Normally, elements receiving this event will simply just forward it, since most filter
or filter-like elements don’t have an internal cache of data. gst_pad_event_default
() does just that, so for most elements, it is enough to forward the event using the
default event handler.
The flush event is created with gst_event_new (GST_EVENT_FLUSH);. Like the EOS
event, it has no properties.

89

Chapter 19. Events: Seeking, Navigation and More

Stream Discontinuity
A discontinuity event is sent downstream to indicate a discontinuity in the data
stream. This can happen because the application used the seek event to seek to a
different position in the stream, but it can also be because a real-time network source
temporarily lost the connection. After the connection is restored, the data stream will
continue, but not at the same point where it got lost. Therefore, a discontinuity event
is being sent downstream, too.
Depending on the element type, the event can simply be forwarded using
gst_pad_event_default (), or it should be parsed and a modified event should
be sent on. The last is true for demuxers, which generally have a byte-to-time
conversion concept. Their input is usually byte-based, so the incoming event will
have an offset in byte units (GST_FORMAT_BYTES), too. Elements downstream,
however, expect discontinuity events in time units, so that it can be used to update
the pipeline clock. Therefore, demuxers and similar elements should not forward
the event, but parse it, free it and send a new discontinuity event (in time units,
GST_FORMAT_TIME) further downstream.
The discontinuity event is created using the function
gst_event_new_discontinuous (). It should set a boolean value which indicates
if the discontinuity event is sent because of a new media type (this can happen if -
during iteration - a new location was set on a network source or on a file source).
then, it should give a list of formats and offsets in that format. The list should be
terminated by 0 as format.

static void
my_filter_some_function (GstMyFilter *filter)
{
GstEvent *event;

[..]
event = gst_event_new_discontinuous (FALSE,

GST_FORMAT_BYTES, 0,
GST_FORMAT_TIME, 0,
0);

gst_pad_push (filter->srcpad, GST_DATA (event));
[..]
}

Elements parsing this event can use macros and functions to access the various
properties. GST_EVENT_DISCONT_NEW_MEDIA (event) checks the new-media
boolean value. gst_event_discont_get_value (event, format, &value) gets
the offset of the new stream position in the specified format. If that format was not
specified when creating the event, the function returns FALSE.

Seek Request
Seek events are meant to request a new stream position to elements. This new posi-
tion can be set in several formats (time, bytes or “units” [a term indicating frames for
video, samples for audio, etc.]). Seeking can be done with respect to the end-of-file,
start-of-file or current position, and can happen in both upstream and downstream
direction. Elements receiving seek events should, depending on the element type, ei-
ther forward it (filters, decoders), change the format in which the event is given and
forward it (demuxers), handle the event by changing the file pointer in their internal
stream resource (file sources) or something else.
Seek events are, like discontinuity events, built up using positions in specified for-
mats (time, bytes, units). They are created using the function gst_event_new_seek
(), where the first argument is the seek type (indicating with respect to which posi-
tion [current, end, start] the seek should be applied, and the format in which the new

90

Chapter 19. Events: Seeking, Navigation and More

position is given (time, bytes, units), and an offset which is the requested position in
the specified format.

static void
my_filter_some_function (GstMyFilter *filter)
{
GstEvent *event;

[..]
/* seek to the start of a resource */
event = gst_event_new_seek (GST_SEEK_SET | GST_FORMAT_BYTES, 0);
gst_pad_push (filter->srcpad, GST_DATA (event));

[..]
}

Elements parsing this event can use macros and functions to access the properties.
The seek type can be retrieved using GST_EVENT_SEEK_TYPE (event). This
seek type contains both the indicator of with respect to what position the seek
should be applied, and the format in which the seek event is given. To get either
one of these properties separately, use GST_EVENT_SEEK_FORMAT (event) or
GST_EVENT_SEEK_METHOD (event). The requested position is available through
GST_EVENT_SEEK_OFFSET (event), and is given in the specified format.

Stream Filler
The filler event is, as the name says, a “filler” of the stream which has no special
meaning associated with itself. It is used to provide data to downstream elements and
should be interpreted as a way of assuring that the normal data flow will continue
further downstream. The event is especially intended for real-time MIDI source ele-
ments, which only generate data when something changes. MIDI decoders will there-
fore stall if nothing changes for several seconds, and therefore playback will stop. The
filler event is sent downstream to assure the MIDI decoder that nothing changed, so
that the normal decoding process will continue and playback will, too. Unless you in-
tend to work with MIDI or other control-language-based data types, you don’t need
this event. You can mostly simply forward it with gst_pad_event_default ().
The stream filler is created using gst_event_new (GST_EVENT_FILLER);. It has no
properties.

Interruption
The interrupt event is generated by queue elements and sent downstream if a timeout
occurs on the stream. The scheduler will use this event to get back in its own main
loop and schedule other elements. This prevents deadlocks or a stream stall if no
data is generated over a part of the pipeline for a considerable amount of time. The
scheduler will process this event internally, so any normal elements do not need to
generate or handle this event at all.
The difference between the filler event and the interrupt event is that the filler event
is a real part of a pipeline, so it will reach fellow elements, which can use it to "do
nothing else than what I used to do". The interrupt event never reaches fellow ele-
ments.
The interrupt event (gst_event_new (GST_EVENT_INTERRUPT);) has no properties.

Navigation
WRITEME

91

Chapter 19. Events: Seeking, Navigation and More

Tag (metadata)
Tagging events are being sent downstream to indicate the tags as parsed from the
stream data. This is currently used to preserve tags during stream transcoding from
one format to the other. Tags are discussed extensively in Chapter 18. Most elements
will simply forward the event by calling gst_pad_event_default ().
The tag event is created using the function gst_event_new_tag (). It requires a
filled taglist as argument.
Elements parsing this event can use the function gst_event_tag_get_list
(event) to acquire the taglist that was parsed.

Notes
1. ../../gstreamer/html/gstreamer-GstEvent.html
2. ../../gstreamer/html/gstreamer-GstStructure.html

92

Chapter 20. Pre-made base classes

So far, we’ve been looking at low-level concepts of creating any type of GStreamer
element. Now, let’s assume that all you want is to create an simple audiosink that
works exactly the same as, say, “esdsink”, or a filter that simply normalizes audio
volume. Such elements are very general in concept and since they do nothing spe-
cial, they should be easier to code than to provide your own scheduler activation
functions and doing complex caps negotiation. For this purpose, GStreamer pro-
vides base classes that simplify some types of elements. Those base classes will be
discussed in this chapter.

Writing a sink
Sinks are special elements in GStreamer. This is because sink elements have to
take care of preroll, which is the process that takes care that elements going into the
GST_STATE_PAUSED state will have buffers ready after the state change. The result of
this is that such elements can start processing data immediately after going into
the GST_STATE_PLAYING state, without requiring to take some time to initialize
outputs or set up decoders; all that is done already before the state-change to
GST_STATE_PAUSED successfully completes.
Preroll, however, is a complex process that would require the same code in many el-
ements. Therefore, sink elements can derive from the GstBaseSink base-class, which
does preroll and a few other utility functions automatically. The derived class only
needs to implement a bunch of virtual functions and will work automatically.
The GstBaseSink base-class specifies some limitations on elements, though:

• It requires that the sink only has one sinkpad. Sink elements that need more than
one sinkpad, cannot use this base-class.

• The base-class owns the pad, and specifies caps negotiation, data handling, pad
allocation and such functions. If you need more than the ones provided as virtual
functions, then you cannot use this base-class.

• By implementing the pad_allocate () function, it is possible for upstream ele-
ments to use special memory, such as memory on the X server side that only the
sink can allocate, or even hardware memory mmap ()’ed from the kernel. Note
that in almost all cases, you will want to subclass the GstBuffer object, so that
your own set of functions will be called when the buffer loses its last reference.

Sink elements can derive from GstBaseSink using the usual GObject type creation
voodoo, or by using the convenience macro GST_BOILERPLATE ():

GST_BOILERPLATE_FULL (GstMySink, gst_my_sink, GstBaseSink, GST_TYPE_BASE_SINK);

[..]

static void
gst_my_sink_class_init (GstMySinkClass * klass)
{
klass->set_caps = [..];
klass->render = [..];

[..]
}

The advantages of deriving from GstBaseSink are numerous:

• Derived implementations barely need to be aware of preroll, and do not need to
know anything about the technical implementation requirements of preroll. The
base-class does all the hard work.

93

Chapter 20. Pre-made base classes

Less code to write in the derived class, shared code (and thus shared bugfixes).
There are also specialized base classes for audio and video, let’s look at those a bit.

Writing an audio sink
Essentially, audio sink implementations are just a special case of a general sink. There
are two audio base classes that you can choose to derive from, depending on your
needs: GstBaseAudiosink and GstAudioSink. The baseaudiosink provides full con-
trol over how synchronization and scheduling is handled, by using a ringbuffer that
the derived class controls and provides. The audiosink base-class is a derived class of
the baseaudiosink, implementing a standard ringbuffer implementing default syn-
chronization and providing a standard audio-sample clock. Derived classes of this
base class merely need to provide a _open (), _close () and a _write () function
implementation, and some optional functions. This should suffice for many sound-
server output elements and even most interfaces. More demanding audio systems,
such as Jack, would want to implement the GstBaseAudioSink base-class.
The GstBaseAusioSink has little to no limitations and should fit virtually every im-
plementation, but is hard to implement. The GstAudioSink, on the other hand, only
fits those systems with a simple open () / close () / write () API (which prac-
tically means pretty much all of them), but has the advantage that it is a lot easier to
implement. The benefits of this second base class are large:

• Automatic synchronization, without any code in the derived class.
• Also automatically provides a clock, so that other sinks (e.g. in case of audio/video

playback) are synchronized.
• Features can be added to all audiosinks by making a change in the base class, which

makes maintainance easy.
• Derived classes require only three small functions, plus some GObject boilerplate

code.
In addition to implementing the audio base-class virtual functions, derived classes
can (should) also implement the GstBaseSink set_caps () and get_caps () vir-
tual functions for negotiation.

Writing a video sink
Writing a videosink can be done using the GstVideoSink base-class, which derives
from GstBaseSink internally. Currently, it does nothing yet but add another compile
dependency, so derived classes will need to implement all base-sink virtual func-
tions. When they do this correctly, this will have some positive effects on the end
user experience with the videosink:

• Because of preroll (and the preroll () virtual function), it is possible to display a
video frame already when going into the GST_STATE_PAUSED state.

• By adding new features to GstVideoSink, it will be possible to add extensions to
videosinks that affect all of them, but only need to be coded once, which is a huge
maintainance benefit.

Writing a source
In the previous part, particularly Providing random access, we have learned that
some types of elements can provide random access. This applies most definitely
to source elements reading from a randomly seekable location, such as file sources.

94

Chapter 20. Pre-made base classes

However, other source elements may be better described as a live source element,
such as a camera source, an audio card source and such; those are not seekable and
do not provide byte-exact access. For all such use cases, GStreamer provides two
base classes: GstBaseSrc for the basic source functionality, and GstPushSrc, which
is a non-byte exact source base-class. The pushsource base class itself derives from
basesource as well, and thus all statements about the basesource apply to the push-
source, too.
The basesrc class does several things automatically for derived classes, so they no
longer have to worry about it:

• Fixes to GstBaseSrc apply to all derived classes automatically.
• Automatic pad activation handling, and task-wrapping in case we get assigned to

start a task ourselves.
The GstBaseSrc may not be suitable for all cases, though; it has limitations:

• There is one and only one sourcepad. Source elements requiring multiple sour-
cepads cannot use this base-class.

• Since the base-class owns the pad and derived classes can only control it as far as
the virtual functions allow, you are limited to the functionality provided by the
virtual functions. If you need more, you cannot use this base-class.

It is possible to use special memory, such as X server memory pointers or mmap ()’ed
memory areas, as data pointers in buffers returned from the create() virtual func-
tion. In almost all cases, you will want to subclass GstBuffer so that your own set of
functions can be called when the buffer is destroyed.

Writing an audio source
An audio source is nothing more but a special case of a pushsource. Audio
sources would be anything that reads audio, such as a source reading from a
soundserver, a kernel interface (such as ALSA) or a test sound / signal generator.
GStreamer provides two base classes, similar to the two audiosinks described in
Writing an audio sink; one is ringbuffer-based, and requires the derived class to take
care of its own scheduling, synchronization and such. The other is based on this
GstBaseAudioSrc and is called GstAudioSrc, and provides a simple open (),
close () and read () interface, which is rather simple to implement and will
suffice for most soundserver sources and audio interfaces (e.g. ALSA or OSS) out
there.
The GstAudioSrc base-class has several benefits for derived classes, on top of the
benefits of the GstPushSrc base-class that it is based on:

• Does syncronization and provides a clock.
• New features can be added to it and will apply to all derived classes automatically.

Writing a transformation element
A third base-class that GStreamer provides is the GstBaseTransform. This is a base
class for elements with one sourcepad and one sinkpad which act as a filter of some
sort, such as volume changing, audio resampling, audio format conversion, and so on
and so on. There is quite a lot of bookkeeping that such elements need to do in order
for things such as buffer allocation forwarding, passthrough, in-place processing and
such to all work correctly. This base class does all that for you, so that you just need
to do the actual processing.

95

Chapter 20. Pre-made base classes

Since the GstBaseTransform is based on the 1-to-1 model for filters, it may not apply
well to elements such as decoders, which may have to parse properties from the
stream. Also, it will not work for elements requiring more than one sourcepad or
sinkpad.

96

Chapter 21. Writing a Demuxer or Parser

Demuxers are the 1-to-N elements that need very special care. They are responsible
for timestamping raw, unparsed data into elementary video or audio streams, and
there are many things that you can optimize or do wrong. Here, several culprits will
be mentioned and common solutions will be offered. Parsers are demuxers with only
one source pad. Also, they only cut the stream into buffers, they don’t touch the data
otherwise.
As mentioned previously in Caps negotiation, demuxers should use fixed caps, since
their data type will not change.
As discussed in Different scheduling modes, demuxer elements can be written in
multiple ways:

• They can be the driving force of the pipeline, by running their own task. This works
particularly well for elements that need random access, for example an AVI de-
muxer.

• They can also run in push-based mode, which means that an upstream element
drives the pipeline. This works particularly well for streams that may come from
network, such as Ogg.

In addition, audio parsers with one output can, in theory, also be written in random
access mode. Although simple playback will mostly work if your element only ac-
cepts one mode, it may be required to implement multiple modes to work in combi-
nation with all sorts of applications, such as editing. Also, performance may become
better if you implement multiple modes. See Different scheduling modes to see how
an element can accept multiple scheduling modes.

97

Chapter 21. Writing a Demuxer or Parser

98

Chapter 22. Writing a N-to-1 Element or Muxer

N-to-1 elements have been previously mentioned and discussed in both Chapter 13
and in Different scheduling modes. The main noteworthy thing about N-to-1 ele-
ments is that each pad is push-based in its own thread, and the N-to-1 element syn-
chronizes those streams by expected-timestamp-based logic. This means it lets all
streams wait except for the one that provides the earliest next-expected timestamp.
When that stream has passwed one buffer, the next earliest-expected-timestamp is
calculated, and we start back where we were, until all streams have reached EOS.
There is a helper base class, called GstCollectPads, that will help you to do this.
Note, however, that this helper class will only help you with grabbing a buffer from
each input and giving you the one with earliest timestamp. If you need anything
more difficult, such as "don’t-grab-a-new-buffer until a given timestamp" or some-
thing like that, you’ll need to do this yourself.

99

Chapter 22. Writing a N-to-1 Element or Muxer

100

Chapter 23. Writing a Manager

Managers are elements that add a function or unify the function of another (series
of) element(s). Managers are generally a GstBin with one or more ghostpads. Inside
them is/are the actual element(s) that matters. There is several cases where this is
useful. For example:

• To add support for private events with custom event handling to another element.
• To add support for custom pad _query () or _convert () handling to another

element.
• To add custom data handling before or after another element’s data handler func-

tion (generally its _chain () function).
• To embed an element, or a series of elements, into something that looks and works

like a simple element to the outside world.
Making a manager is about as simple as it gets. You can derive from a GstBin, and in
most cases, you can embed the required elements in the _init () already, including
setup of ghostpads. If you need any custom data handlers, you can connect signals
or embed a second element which you control.

101

Chapter 23. Writing a Manager

102

Chapter 24. Things to check when writing an element

This chapter contains a fairly random selection of things to take care of when writing
an element. It’s up to you how far you’re going to stick to those guidelines. However,
keep in mind that when you’re writing an element and hope for it to be included in
the mainstream GStreamer distribution, it has to meet those requirements. As far as
possible, we will try to explain why those requirements are set.

About states

• Make sure the state of an element gets reset when going to NULL. Ideally, this should
set all object properties to their original state. This function should also be called
from _init.

• Make sure an element forgets everything about its contained stream when going
from PAUSED to READY. In READY, all stream states are reset. An element that goes
from PAUSED to READY and back to PAUSED should start reading the stream from he
start again.

• People that use gst-launch for testing have the tendency to not care about cleaning
up. This is wrong. An element should be tested using various applications, where
testing not only means to “make sure it doesn’t crash”, but also to test for memory
leaks using tools such as valgrind. Elements have to be reusable in a pipeline after
having been reset.

Debugging

• Elements should never use their standard output for debugging (using functions
such as printf () or g_print ()). Instead, elements should use the logging func-
tions provided by GStreamer, named GST_DEBUG (), GST_LOG (), GST_INFO (),
GST_WARNING () and GST_ERROR (). The various logging levels can be turned on
and off at runtime and can thus be used for solving issues as they turn up. Instead
of GST_LOG () (as an example), you can also use GST_LOG_OBJECT () to print the
object that you’re logging output for.

• Ideally, elements should use their own debugging category. Most elements use the
following code to do that:
GST_DEBUG_CATEGORY_STATIC (myelement_debug);
#define GST_CAT_DEFAULT myelement_debug

[..]

static void
gst_myelement_class_init (GstMyelementClass *klass)
{
[..]
GST_DEBUG_CATEGORY_INIT (myelement_debug, "myelement",

0, "My own element");
}

At runtime, you can turn on debugging using the commandline option
--gst-debug=myelement:5.

103

Chapter 24. Things to check when writing an element

Querying, events and the like

• All elements to which it applies (sources, sinks, demuxers) should implement
query functions on their pads, so that applications and neighbour elements can
request the current position, the stream length (if known) and so on.

• All elements that are event-aware (their GST_ELEMENT_EVENT_AWARE flag is set)
should implement event handling for all events, either specifically or using
gst_pad_event_default (). Elements that you should handle specifically are
the interrupt event, in order to properly bail out as soon as possible if state is
changed. Events may never be dropped unless specifically intended.

• Loop-based elements should always implement event handling, in order to pre-
vent hangs (infinite loop) on state changes.

Testing your element

• gst-launch is not a good tool to show that your element is finished. Applications
such as Rhythmbox and Totem (for GNOME) or AmaroK (for KDE) are. gst-launch
will not test various things such as proper clean-up on reset, interrupt event han-
dling, querying and so on.

• Parsers and demuxers should make sure to check their input. Input cannot be
trusted. Prevent possible buffer overflows and the like. Feel free to error out on
unrecoverable stream errors. Test your demuxer using stream corruption elements
such as breakmydata (included in gst-plugins). It will randomly insert, delete and
modify bytes in a stream, and is therefore a good test for robustness. If your ele-
ment crashes when adding this element, your element needs fixing. If it errors out
properly, it’s good enough. Ideally, it’d just continue to work and forward data as
much as possible.

• Demuxers should not assume that seeking works. Be prepared to work with un-
seekable input streams (e.g. network sources) as well.

• Sources and sinks should be prepared to be assigned another clock then the one
they expose themselves. Always use the provided clock for synchronization, else
you’ll get A/V sync issues.

104

Chapter 25. Porting 0.8 plug-ins to 0.9

This section of the appendix will discuss shortly what changes to plugins will be
needed to quickly and conveniently port most applications from GStreamer-0.8 to
GStreamer-0.9, with references to the relevant sections in this Plugin Writer’s Guide
where needed. With this list, it should be possible to port most plugins to GStreamer-
0.9 in less than a day. Exceptions are elements that will require a base class in 0.9
(sources, sinks), in which case it may take a lot longer, depending on the coder’s skills
(however, when using the GstBaseSink and GstBaseSrc base-classes, it shouldn’t
be all too bad), and elements requiring the deprecated bytestream interface, which
should take 1-2 days with random access. The scheduling parts of muxers will also
need a rewrite, which will take about the same amount of time.

List of changes

• Discont events have been replaced by newsegment events. In 0.9, it is essential
that you send a newsegment event downstream before you send your first buffer
(in 0.8 the scheduler would invent discont events if you forgot them, in 0.9 this is
no longer the case).

• In 0.9, buffers have caps attached to them. Elements should allocate new buffers
with gst_pad_alloc_buffer (). See Caps negotiation for more details.

• Most functions returning an object or an object property have been changed to
return its own reference rather than a constant reference of the one owned by the
object itself. The reason for this change is primarily threadsafety. This means
effectively that return values of functions such as gst_element_get_pad (),
gst_pad_get_name (), gst_pad_get_parent (), gst_object_get_parent (),
and many more like these have to be free’ed or unreferenced after use. Check the
API references of each function to know for sure whether return values should be
free’ed or not.

• In 0.8, scheduling could happen in any way. Source elements could be _get ()-
based or _loop ()-based, and any other element could be _chain ()-based or
_loop ()-based, with no limitations. Scheduling in 0.9 is simpler for the sched-
uler, and the element is expected to do some more work. Pads get assigned a
scheduling mode, based on which they can either operate in random access-mode,
in pipeline driving mode or in push-mode. all this is documented in detail in
Different scheduling modes. As a result of this, the bytestream object no longer ex-
ists. Elements requiring byte-level access should now use random access on their
sinkpads.

• Negotiation is asynchronous. This means that downstream negotiation is done as
data comes in and upstream negotiation is done whenever renegotiation is re-
quired. All details are described in Caps negotiation.

• For as far as possible, elements should try to use existing base classes in 0.9.
Sink and source elements, for example, could derive from GstBaseSrc and
GstBaseSink. Audio sinks or sources could even derive from audio-specific base
classes. All existing base classes have been discussed in Pre-made base classes
and the next few chapters.

• In 0.9, event handling and buffers are separated once again. This means that in
order to receive events, one no longer has to set the GST_FLAG_EVENT_AWARE flag,
but can simply set an event handling function on the element’s sinkpad(s), us-
ing the function gst_pad_set_event_function (). The _chain ()-function will
only receive buffers.

• Although core will wrap most threading-related locking for you (e.g. it takes the
stream lock before calling your data handling functions), you are still responsible
for locking around certain functions, e.g. object properties. Be sure to lock properly

105

Chapter 25. Porting 0.8 plug-ins to 0.9

here, since applications will change those properties in a different thread than the
thread which does the actual data passing! You can use the GST_OBJECT_LOCK ()
and GST_OBJECT_UNLOCK () helpers in most cases, fortunately, which grabs the
default property lock of the element.

• GstValueFixedList and all *_fixed_list_* () functions were renamed to
GstValueArray and *_array_* ().

• The semantics of GST_STATE_PAUSED and GST_STATE_PLAYING have changed
for elements that are not sink elements. Non-sink elements need to be able to ac-
cept and process data already in the GST_STATE_PAUSED state now (ie. when
prerolling the pipeline). More details can be found in Chapter 6.

• If your plugin’s state change function hasn’t been superseded by virtual start()
and stop() methods of one of the new base classes, then your plugin’s state change
functions may need to be changed in order to safely handle concurrent access by
multiple threads. Your typical state change function will now first handle upwards
state changes, then chain up to the state change function of the parent class (usually
GstElementClass in these cases), and only then handle downwards state changes.
See the vorbis decoder plugin in gst-plugins-base for an example.
The reason for this is that in the case of downwards state changes you don’t want
to destroy allocated resources while your plugin’s chain function (for example)
is still accessing those resources in another thread. Whether your chain function
might be running or not depends on the state of your plugin’s pads, and the state
of those pads is closely linked to the state of the element. Pad states are handled in
the GstElement class’s state change function, including proper locking, that’s why
it is essential to chain up before destroying allocated resources.
As already mentioned above, you should really rewrite your plugin to derive from
one of the new base classes though, so you don’t have to worry about these things,
as the base class will handle it for you. There are no base classes for decoders and
encoders yet, so the above paragraphs about state changes definitively apply if
your plugin is a decoder or an encoder.

• gst_pad_set_link_function (), which used to set a function that would
be called when a format was negotiated between two GstPads, now sets
a function that is called when two elements are linked together in an
application. For all practical purposes, you most likely want to use the function
gst_pad_set_setcaps_function (), nowadays, which sets a function
that is called when the format streaming over a pad changes (so similar to
_set_link_function () in GStreamer-0.8).
If the element is derived from a GstBase class, then override the set_caps ().

• gst_pad_use_explicit_caps () has been replaced by
gst_pad_use_fixed_caps (). You can then set the fixed caps to use on a pad
with gst_pad_set_caps ().

106

Chapter 26. GStreamer licensing

How to license the code you write for GStreamer
GStreamer is a plugin-based framework licensed under the LGPL. The reason for this
choice in licensing is to ensure that everyone can use GStreamer to build applications
using licenses of their choice.
To keep this policy viable, the GStreamer community has made a few licensing rules
for code to be included in GStreamer’s core or GStreamer’s official modules, like our
plugin packages. We require that all code going into our core package is LGPL. For
the plugin code, we require the use of the LGPL for all plugins written from scratch
or linking to external libraries. The only exception to this is when plugins contain
older code under more liberal licenses (like the MPL or BSD). They can use those
licenses instead and will still be considered for inclusion. We do not accept GPL code
to be added to our plugins module, but we do accept LGPL-licensed plugins using an
external GPL library. The reason for demanding plugins be licensed under the LGPL,
even when using a GPL library, is that other developers might want to use the plugin
code as a template for plugins linking to non-GPL libraries.
We also plan on splitting out the plugins using GPL libraries into a separate package
eventually and implement a system which makes sure an application will not be able
to access these plugins unless it uses some special code to do so. The point of this is
not to block GPL-licensed plugins from being used and developed, but to make sure
people are not unintentionally violating the GPL license of said plugins.
This advisory is part of a bigger advisory with a FAQ which you can find on the
GStreamer website1

Notes
1. http://gstreamer.freedesktop.org/documentation/licensing.html

107

Chapter 26. GStreamer licensing

108

	GStreamer Plugin Writer's Guide (0.10.1.2)
	Table of Contents
	Chapter 1. Preface
	Who Should Read This Guide?
	Preliminary Reading
	Structure of This Guide

	Chapter 2. Basic Concepts
	Elements and Plugins
	Pads
	Data, Buffers and Events
	Buffer Allocation

	Mimetypes and Properties
	The Basic Types

	Chapter 3. Constructing the Boilerplate
	Getting the GStreamer Plugin Templates
	Using the Project Stamp
	Examining the Basic Code
	GstElementDetails
	GstStaticPadTemplate
	Constructor Functions
	The plugininit function

	Chapter 4. Specifying the pads
	The setcapsfunction

	Chapter 5. The chain function
	Chapter 6. What are states?
	Managing filter state

	Chapter 7. Adding Arguments
	Chapter 8. Signals
	Chapter 9. Building a Test Application
	Chapter 10. Caps negotiation
	Caps negotiation use cases
	Fixed caps
	Downstream caps negotiation
	Negotiating caps embedded in input caps
	Parsing and setting caps

	Upstream caps (re)negotiation
	Implementing a getcaps function

	Chapter 11. Different scheduling modes
	The pad activation stage
	Pads driving the pipeline
	Providing random access

	Chapter 12. Types and Properties
	Building a Simple Format for Testing
	Typefind Functions and Autoplugging
	List of Defined Types

	Chapter 13. Request and Sometimes pads
	Sometimes pads
	Request pads

	Chapter 14. Clocking
	Types of time
	Clocks
	Flow of data between elements and time
	Obligations of each element.
	Source elements
	Sink elements

	Chapter 15. Supporting Dynamic Parameters
	Comparing Dynamic Parameters with GObject Properties
	Getting Started
	Defining Parameter Specifications
	Direct Method
	Callback Method
	Array Method

	The Data Processing Loop
	DParam Manager Modes
	Dynamic Parameters for Video

	Chapter 16. MIDI
	Chapter 17. Interfaces
	How to Implement Interfaces
	URI interface
	Mixer Interface
	Tuner Interface
	Color Balance Interface
	Property Probe Interface
	X Overlay Interface
	Navigation Interface

	Chapter 18. Tagging (Metadata and Streaminfo)
	Reading Tags from Streams
	Writing Tags to Streams

	Chapter 19. Events: Seeking, Navigation and More
	Downstream events
	Upstream events
	All Events Together
	End of Stream (EOS)
	Flush
	Stream Discontinuity
	Seek Request
	Stream Filler
	Interruption
	Navigation
	Tag (metadata)

	Chapter 20. Premade base classes
	Writing a sink
	Writing an audio sink
	Writing a video sink

	Writing a source
	Writing an audio source

	Writing a transformation element

	Chapter 21. Writing a Demuxer or Parser
	Chapter 22. Writing a Nto1 Element or Muxer
	Chapter 23. Writing a Manager
	Chapter 24. Things to check when writing an element
	About states
	Debugging
	Querying, events and the like
	Testing your element

	Chapter 25. Porting 0.8 plugins to 0.9
	List of changes

	Chapter 26. GStreamer licensing
	How to license the code you write for GStreamer

